
Text Analytics Toolbox™

Reference

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Text Analytics Toolbox™ Reference
© COPYRIGHT 2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2017 Online Only New for Version 1.0

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Functions — Alphabetical List
1

iii

Contents

Functions — Alphabetical List

1

bagOfWords
Bag-of-words model

Description
A bag-of-words model (also known as a term-frequency counter) records the number of
times that words appear in each document of a collection.

bagOfWords does not split text into words. To create an array of tokenized documents,
see tokenizedDocument.

Creation

Syntax
bag = bagOfWords
bag = bagOfWords(documents)
bag = bagOfWords(uniqueWords,counts)

Description

bag = bagOfWords creates an empty bag-of-words model.

bag = bagOfWords(documents) counts the words appearing in documents and
returns a bag-of-words model.

bag = bagOfWords(uniqueWords,counts) creates a bag-of-words model using the
words in uniqueWords and the corresponding frequency counts in counts.

Input Arguments
documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

1 Functions — Alphabetical List

1-2

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row of the words of a single document.

uniqueWords — Unique word list
string vector | cell array of character vectors

Unique word list, specified as a string vector or a cell array of character vectors. If
uniqueWords contains <missing>, then the function ignores the missing values. The
size of uniqueWords must be 1-by-V where V is the number of columns of counts.
Example: ["an" "example" "list"]
Data Types: string | cell

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words corresponding to uniqueWords, specified as a matrix of
nonnegative integers. The value counts(i,j) corresponds to the number of times the
word uniqueWords(j) appears in the ith document.

counts must have numel(uniqueWords) columns.

Properties
Counts — Word counts per document
sparse matrix

Word counts per document, specified as a sparse matrix.

Vocabulary — Words in model
string vector

Words in the model, specified as a string vector.
Data Types: string

NumWords — Number of words seen
nonnegative integer

Number of words seen, specified as a nonnegative integer.

 bagOfWords

1-3

NumDocuments — Number of documents seen
nonnegative integer

Number of documents seen, specified as a nonnegative integer.

Object Functions
encode Encode documents as matrix of word counts
tfidf Term Frequency–Inverse Document Frequency (tf-idf) matrix
topkwords Most important words in bag-of-words model or LDA topic
addDocument Add documents to bag-of-words model
removeDocument Remove documents from bag-of-words model
removeEmptyDocuments Remove empty documents from tokenized document array or

bag-of-words model
removeWords Remove selected words from document or bag-of-words model
removeInfrequentWords Remove words with low counts from bag-of-words model

Examples

Create Bag-of-Words Model

Load the sonnetsDocuments data. sonnetsDocuments returns a
tokenizedDocument array of preprocessed versions of Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
documents(1:10)

ans =
 10x1 tokenizedDocument:

1 Functions — Alphabetical List

1-4

 (1,1) 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 (2,1) 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 (3,1) 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 (4,1) 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 (5,1) 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 (6,1) 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 (7,1) 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 (8,1) 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 (9,1) 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
(10,1) 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

View the top 10 words and their total counts.

T = topkwords(bag,10)

T=10x2 table null
 Word Count
 _______ _____

 "thy" 281
 "thou" 234
 "love" 162
 "thee" 161
 "doth" 88
 "mine" 63
 "shall" 59
 "eyes" 56
 "sweet" 55
 "time" 53

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

 bagOfWords

1-5

Create Bag-of-Words Model from Unique Words and Counts

Create a bag-of-words model using a string array of unique words and a matrix of word
counts.

uniqueWords = ["a" "an" "another" "example" "final" "sentence" "third"];
counts = [...
 1 2 0 1 0 1 0;
 0 0 3 1 0 4 0;
 1 0 0 5 0 3 1;
 1 0 0 1 7 0 0];
bag = bagOfWords(uniqueWords,counts)

bag =
bagOfWords with 7 words and 4 documents:

 a an another example final …
 1 2 0 1 0
 0 0 3 1 0
 …

Import Text Data Using a File Datastore

Import three example sonnet text files using a file datastore.

Create a file datastore for the example sonnet text files. The example sonnets have
filenames "exampleSonnet1.txt", "exampleSonnet2.txt", and
"exampleSonnet3.txt". Specify the read function to be extractFileText.

fds = fileDatastore('exampleSonnet*.txt','ReadFcn',@extractFileText)

fds =
 FileDatastore with properties:

 Files: {
 ' ...\ib3A4F7C\26\tp410e6e2b\textanalytics-ex73762432\exampleSonnet1.txt';
 ' ...\ib3A4F7C\26\tp410e6e2b\textanalytics-ex73762432\exampleSonnet2.txt';
 ' ...\ib3A4F7C\26\tp410e6e2b\textanalytics-ex73762432\exampleSonnet3.txt'
 }

1 Functions — Alphabetical List

1-6

 UniformRead: 0
 ReadFcn: @extractFileText

Create an empty bag-of-words model.

bag = bagOfWords

bag =
Empty bagOfWords

Loop over the files in the datastore and read each file. Tokenize the text and add the
document to bag.

while hasdata(fds)
 str = read(fds);
 document = tokenizedDocument(str);
 bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag

bag =
bagOfWords with 224 words and 3 documents:

 From fairest creatures we desire …
 1 1 1 1 1
 0 0 0 0 0
 …

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

 bagOfWords

1-7

bag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

Remove the stop words using the stopWords function to input a list of stop words
directly into removeWords.

newBag = removeWords(bag,stopWords)

newBag =
bagOfWords with 4 words and 2 documents:

 example short sentence second
 1 1 1 0
 0 1 1 1

Most Frequent Words of Bag-of-Words Model

Create a table of the most frequent words of a bag-of-words model.

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1

1 Functions — Alphabetical List

1-8

 0 0 0 0 0
 …

Find the top five words.
T = topkwords(bag)
T=5x2 table
 Word Count
 ______ _____

 "thy" 281
 "thou" 234
 "love" 162
 "thee" 161
 "doth" 88

Find the top 20 words.
k = 20;
T = topkwords(bag,k)
T=20x2 table
 Word Count
 ________ _____

 "thy" 281
 "thou" 234
 "love" 162
 "thee" 161
 "doth" 88
 "mine" 63
 "shall" 59
 "eyes" 56
 "sweet" 55
 "time" 53
 "beauty" 52
 "nor" 52
 "art" 51
 "yet" 51
 "o" 50
 "heart" 50

Remove the example folder from the path using rmpath.

 bagOfWords

1-9

rmpath(exampleFolder)

Create Tf-idf Matrix

Create a Term Frequency–Inverse Document Frequency (tf-idf) matrix from a bag-of-
words model.

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans =

 Columns 1 through 7

 3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452
 0 0 0 0 0 4.5287 0
 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0

1 Functions — Alphabetical List

1-10

 0 0 0 0 0 2.2644 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0
 0 0 2.7344 0 0 0 0

 Columns 8 through 10

 3.8918 2.4720 2.5520
 0 0 0
 0 0 2.5520
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 2.5520
 0 0 0

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

• “Prepare Text Data for Analysis”
• “Create Simple Text Model for Classification”

See Also
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 bagOfWords

1-11

ldaModel
Latent Dirichlet allocation (LDA) model

Description
A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers word probabilities in topics.

Creation
Create an LDA model using the fitlda function.

Properties
NumTopics — Number of topics
positive integer

Number of topics in the LDA model, specified as a positive integer.

TopicConcentration — Topic concentration
positive scalar

Topic concentration parameter, specified as a positive scalar.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration parameter, specified as a nonnegative scalar. The software sets the
concentration per word to WordConcentration/numWords, where numWords is the
vocabulary size of the input documents.

CorpusTopicProbabilities — Topic probabilities of input document set
vector

1 Functions — Alphabetical List

1-12

Topic probabilities of input document set, specified as a vector. The corpus topic
probabilities of an LDA model are the probabilities of observing each topic in the entire
data set used to fit the LDA model. CorpusTopicProbabilities is a 1-by-K vector
where K is the number of topics. The kth entry of CorpusTopicProbabilities
corresponds to the probability of observing topic k.

DocumentTopicProbabilities — Topic probabilities per input document
matrix

Topic probabilities per input document, specified as a matrix. The document topic
probabilities of an LDA model are the probabilities of observing each topic in each
document used to fit the LDA model. DocumentTopicProbabilities is a D-by-K
matrix where D is the number of documents used to fit the LDA model, and K is the
number of topics. The (d,k)th entry of DocumentTopicProbabilities corresponds to
the probability of observing topic k in document d.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros),
then the corresponding columns of DocumentTopicProbabilities and
TopicWordProbabilities are zeros.

TopicWordProbabilities — Word probabilities per topic
matrix

Word probabilities per topic, specified as a matrix. The topic word probabilities of an
LDA model are the probabilities of observing each word in each topic of the LDA model.
TopicWordProbabilities is a V-by-K matrix, where V is the number of words in
Vocabulary and K is the number of topics. The (v,k)th entry of
TopicWordProbabilities corresponds to the probability of observing word v in topic k.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros),
then the corresponding columns of DocumentTopicProbabilities and
TopicWordProbabilities are zeros.

FitInfo — Information recorded when fitting LDA model
struct

Information recorded when fitting LDA model, specified as a struct with the following
fields:

• TerminationCode – Status of optimization upon exit

 ldaModel

1-13

• 0 – Iteration limit reached.
• 1 – Tolerance on log-likelihood satisfied.

• TerminationStatus – Explanation of the returned termination code
• NumIterations – Number of iterations performed
• NegativeLogLikelihood – Negative log-likelihood for the data passed to fitlda
• Perplexity – Perplexity for the data passed to fitlda
• Solver – Name of the solver used
• History - Struct holding the optimization history

Data Types: struct

Vocabulary — List of words in the model
string vector

List of words in the model, specified as a string vector.
Data Types: string

Object Functions
logp Document log-probabilities and goodness of fit of LDA model
predict Predict top LDA topics of documents
resume Resume fitting LDA model
topkwords Most important words in bag-of-words model or LDA topic
transform Transform documents into lower-dimensional space
wordcloud Create word cloud chart from bag-of-words model or LDA model

Examples
Fit LDA Model

Fit a Latent Dirichlet Allocation model to a collection of documents.

Load the sonnetsDocuments data and create a bag-of-words model.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

1 Functions — Alphabetical List

1-14

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0286443 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.01	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]

 ldaModel

1-15

 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Visualize the first four topics using word clouds.

figure
for topicIdx = 1:4
 subplot(2,2,topicIdx)
 wordcloud(mdl,topicIdx);
 title("Topic: " + topicIdx)
end

Remove the example folder from the path using rmpath.

1 Functions — Alphabetical List

1-16

rmpath(exampleFolder)

Highest Probability Words of LDA Topic

Create a table of the words with highest probability of an LDA topic.

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents);

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0249502 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.00	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 ldaModel

1-17

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Find the top 20 words of the first topic.
k = 20;
topicIdx = 1;
T = topkwords(mdl,k,topicIdx)

Find the top 20 words of the first topic and use inverse mean scaling on the scores.
T = topkwords(mdl,k,topicIdx,'Scaling','inversemean')

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Document Topic Probabilities of LDA Model

Get the document topic probabilities (also known as topic mixtures) of the documents
used to fit an LDA model.

Load the sonnetsDocuments data and create a bag-of-words model.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

1 Functions — Alphabetical List

1-18

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0253534 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.01	Inf	1.159e+03	5.000	0
1	0.04	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.02	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

View the topic probabilities of the first document in the training data.

topicMixtures = mdl.DocumentTopicProbabilities;
figure
bar(topicMixture(1,:))

 ldaModel

1-19

title("Document 1 Topic Probabilities")
xlabel("Topic Index")
ylabel("Probability")

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

• “Analyze Text Data Using Topic Models”
• “Prepare Text Data for Analysis”
• “Extract Text Data From Files”

1 Functions — Alphabetical List

1-20

See Also
bagOfWords | lsaModel

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

 ldaModel

1-21

lsaModel
Latent semantic analysis (LSA) model

Description
A latent semantic analysis (LSA) model discovers relationships between documents and
the words that they contain.

Creation
Create an LSA model using the fitlsa function.

Properties
NumComponents — Number of components
nonnegative integer

Number of components, specified as a nonnegative integer. The number of components is
the dimensionality of the result vectors. Changing the value of NumComponents changes
the length of the resulting vectors, without influencing the initial values. You can only
set NumComponents to be less than or equal to the number of components used to fit the
LSA model.
Example: 100

FeatureStrengthExponent — Exponent scaling feature component strengths
nonnegative scalar

Exponent scaling feature component strengths for the DocumentScores and
WordScores properties, and the transform function, specified as a nonnegative scalar.
The LSA model scales the properties by their singular values (feature strengths), with an
exponent of FeatureStrengthExponent/2.
Example: 2.5

1 Functions — Alphabetical List

1-22

ComponentWeights — Component weights
numeric vector

Component weights, specified as a numeric vector. The component weights of an LSA
model are the singular values, squared. ComponentWeights is a 1-by-NumComponents
vector where the jth entry corresponds to the weight of component j. The components are
ordered by decreasing weights. You can use the weights to estimate the importance of
components.

DocumentScores — Score vectors per input document
matrix

Score vectors per input document, specified as a matrix. The document scores of an LSA
model are the score vectors in lower dimensional space of each document used to fit the
LSA model. DocumentScores is a D-by-NumComponents matrix where D is the number
of documents used to fit the LSA model. The (i,j)th entry of DocumentScores
corresponds to the score of component j in document i.

WordScores — Word scores per component
matrix

Word scores per component, specified as a matrix. The word scores of an LSA model are
the scores of each word in each component of the LSA model. WordScores is a V-by-
NumComponents matrix where V is the number of words in Vocabulary. The (v,j)th
entry of WordScores corresponds to the score of word v in component j.

Vocabulary — Words in model
string vector

Words in the model, specified as a string vector.
Data Types: string

Object Functions
transform Transform documents into lower-dimensional space

Examples

 lsaModel

1-23

Fit LSA Model

Fit a Latent Semantic Analysis model to a collection of documents.

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LSA model with 20 components.
numComponents = 20;
mdl = fitlsa(bag,numComponents)

mdl =
 lsaModel with properties:

 NumComponents: 20
 ComponentWeights: [2.7866e+03 515.5889 443.6428 316.4191 295.4065 261.8927 226.1649 186.2160 170.6413 156.6033 151.5275 146.2553 141.6741 135.5318 134.1694 128.9931 124.2382 122.2931 116.5035 116.2590]
 DocumentScores: [154×20 double]
 WordScores: [3092×20 double]
 Vocabulary: [1×3092 string]
 FeatureStrengthExponent: 2

Transform new documents into lower dimensional space using the LSA model.
newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."

1 Functions — Alphabetical List

1-24

 "if music be the food of love, play on."]);
dscores = transform(mdl,newDocuments)

dscores =

 0.1338 0.1623 0.1680 -0.0541 -0.2464 -0.0134 0.2604 0.0205 0.1127 0.0627 0.3311 -0.2327 0.1689 -0.2695 0.0228 0.1241 0.1198 0.2535 -0.0607 0.0305
 0.2547 0.5576 -0.0095 0.5660 -0.0643 -0.1236 -0.0082 -0.0522 -0.0690 -0.0330 0.0385 0.0803 -0.0373 0.0384 -0.0005 0.1943 0.0207 0.0278 0.0001 -0.0469

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Calculate Document Similarity

Create a bag-of-words model from some text data.

str = [
 "I enjoy ham, eggs and bacon for breakfast."
 "I sometimes skip breakfast."
 "I eat eggs and ham for dinner."
];
documents = tokenizedDocument(str);
bag = bagOfWords(documents);

Fit an LSA model with two components. Set the feature strength exponent to 0.5.

numComponents = 2;
exponent = 0.5;
mdl = fitlsa(bag,numComponents, ...
 'FeatureStrengthExponent',exponent)

mdl =
 lsaModel with properties:

 NumComponents: 2
 ComponentWeights: [16.2268 4.0000]
 DocumentScores: [3×2 double]
 WordScores: [14×2 double]
 Vocabulary: ["I" "enjoy" "ham" "," "eggs" "and" "bacon" "for" "breakfast" "." "sometimes" "skip" "eat" "dinner"]
 FeatureStrengthExponent: 0.5000

 lsaModel

1-25

Calculate the cosine distance between the documents score vectors using pdist. View
the distances in a matrix D using squareform. D(i,j) denotes the distance between
document i and j.

dscores = mdl.DocumentScores;
distances = pdist(dscores,'cosine');
D = squareform(distances)

D =

 0 0.6244 0.1489
 0.6244 0 1.1670
 0.1489 1.1670 0

Visualize the similarity between documents by plotting the document score vectors in a
compass plot.

figure
compass(dscores(1,1),dscores(1,2),'red')
hold on
compass(dscores(2,1),dscores(2,2),'green')
compass(dscores(3,1),dscores(3,2),'blue')
hold off
title("Document Scores")
legend(["Document 1" "Document 2" "Document 3"],'Location','bestoutside')

1 Functions — Alphabetical List

1-26

• “Analyze Text Data Using Topic Models”
• “Prepare Text Data for Analysis”
• “Extract Text Data From Files”

See Also
bagOfWords | ldaModel | lsaModel

Topics
“Analyze Text Data Using Topic Models”

 lsaModel

1-27

“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

1 Functions — Alphabetical List

1-28

tokenizedDocument
Array of tokenized documents

Description
A tokenized document is a document represented as a collection of words (also known as
tokens) which is used for analysis.

Creation

Syntax
documents = tokenizedDocument
documents = tokenizedDocument(str)
documents = tokenizedDocument(C,'TokenizeMethod','none')

Description

documents = tokenizedDocument creates an empty array of tokenized documents.

documents = tokenizedDocument(str) tokenizes the elements of str into words
and returns an array of tokenized documents.

The size of documents is the same as the size of str.

documents = tokenizedDocument(C,'TokenizeMethod','none') converts the
cell array C, where the elements of C are split into words, to an array of tokenized
documents.

The size of documents is the same as the size of C.

 tokenizedDocument

1-29

Input Arguments

str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]
Data Types: string | char | cell

C — Pretokenized documents
cell array of string arrays | cell array of character vectors

Pretokenized documents, specified as a cell array of string arrays, or a cell array of
character vectors.

If your input text has already been split into words, then specify the TokenizeMethod
option to be 'none'. The function returns an array of tokenized documents, with words
given by the elements of C. The elements of C must be row vectors of strings, or C must be
a row of character vectors. If C is a row of character vectors, then tokenizedDocument
returns a scalar tokenized document.
Example: {["an", "example", "document"]; ["another", "document"]}
Example: {'an', 'example', 'document'}

If you want to tokenize the input text, then use the syntax documents =
tokenizedDocuments(str), where str is a string array, character vector, or cell array
of character vectors.
Data Types: cell

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'TokenizeMethod','none' specifies to not tokenized the input text.

TokenizeMethod — Method to tokenize documents
'unicode' (default) | 'none'

1 Functions — Alphabetical List

1-30

Method to tokenize documents, specified as one of the following:

• 'unicode' – Tokenize input text into words. The elements of C must be scalar
strings, or character vectors.

• 'none' – Do not tokenize the input text. The elements of C must be row vectors of
strings, or C must be a row of character vectors.

Example: 'TokenizeMethod','none'

Properties
Vocabulary — Unique words in documents
string array

Unique words in documents, specified as a string array. The words do not appear in any
particular order.
Data Types: string

Object Functions

Conversion
string Convert scalar document to string vector
doc2cell Convert documents to cell array of string vectors
joinwords Convert documents to string by joining words

Exploration
context Search documents for word occurrences in context
doclength Length of documents in document array

Manipulation
docfun Apply function to words in documents
erasePunctuation Erase punctuation from text and documents
regexprep Replace text in words of documents using regular expression
replace Find and replace substrings in documents

 tokenizedDocument

1-31

removeEmptyDocuments Remove empty documents from tokenized document array or
bag-of-words model

removeWords Remove selected words from document or bag-of-words model
normalizeWords Remove inflections from words using the Porter stemmer
lower Convert documents to lowercase
upper Convert documents to uppercase
plus Append documents

Export
writeTextDocument Write documents to text file

Examples

Create Tokenized Documents

Create tokenized documents from a string array.

str = [
 "an example of a short sentence"
 "a second short sentence"]

str = 2x1 string array
 "an example of a short sentence"
 "a second short sentence"

documents = tokenizedDocument(str)

documents =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

1 Functions — Alphabetical List

1-32

Remove Stop Words from Documents

Remove the stop words from an array of documents by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.
documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2×1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Remove the stop words using the stopWords function to input a list of stop words
directly into removeWords.

newDocuments = removeWords(documents,stopWords)

newDocuments =
 2×1 tokenizedDocument:

(1,1) 3 tokens: example short sentence
(2,1) 3 tokens: second short sentence

Stem Words in Document Array

Stem the words in a document array using the Porter stemmer.
documents = tokenizedDocument([
 "a strongly worded collection of words"
 "another collection of words"])

documents =
 2×1 tokenizedDocument:

(1,1) 6 tokens: a strongly worded collection of words
(2,1) 4 tokens: another collection of words

 tokenizedDocument

1-33

newDocuments = normalizeWords(documents)

newDocuments =
 2×1 tokenizedDocument:

(1,1) 6 tokens: a strongli word collect of word
(2,1) 4 tokens: anoth collect of word

Search Documents for Word Occurrences

Load the sonnetsDocuments data. sonnetsDocuments returns a
tokenizedDocument array of preprocessed versions of Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data.

documents = sonnetsDocuments;
documents(1:10)

ans =

 10x1 tokenizedDocument:

 (1,1) 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 (2,1) 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 (3,1) 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 (4,1) 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 (5,1) 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 (6,1) 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 (7,1) 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 (8,1) 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 (9,1) 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
(10,1) 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Search for the word "life".

1 Functions — Alphabetical List

1-34

T = context(documents,"life")

T =

 23x3 table

 Context Document Word
 __ ________ ____

 "consumst thy self single life ah thou issueless shalt " 9 10
 "ainted counterfeit lines life life repair times pencil" 16 35
 "d counterfeit lines life life repair times pencil pupi" 16 36
 " heaven knows tomb hides life shows half parts write b" 17 14
 "he eyes long lives gives life thee " 18 69
 "tender embassy love thee life made four two alone sink" 45 23
 "ves beauty though lovers life beauty shall black lines" 63 50
 "s shorn away live second life second head ere beautys " 68 27
 "e rehearse let love even life decay lest wise world lo" 71 46
 "st bail shall carry away life hath line interest memor" 74 8
 "art thou hast lost dregs life prey worms body dead cow" 74 36
 " thoughts food life sweetseasond showers gro" 75 3
 "tten name hence immortal life shall though once gone w" 81 18
 " beauty mute others give life bring tomb lives life fa" 83 45
 "ve life bring tomb lives life fair eyes poets praise d" 83 49
 " steal thyself away term life thou art assured mine li" 92 7
 "fe thou art assured mine life longer thy love stay dep" 92 12
 " fear worst wrongs least life hath end better state be" 92 26
 "anst vex inconstant mind life thy revolt doth lie o ha" 92 41
 " fame faster time wastes life thou preventst scythe cr" 100 69
 "ess harmful deeds better life provide public means pub" 111 10
 "ate hate away threw savd life saying " 145 51
 " many nymphs vowd chaste life keep came tripping maide" 154 15

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

• “Prepare Text Data for Analysis”
• “Create Simple Text Model for Classification”

 tokenizedDocument

1-35

See Also
bagOfWords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-36

wordEmbedding
Map words to vectors and back

Description
Word embeddings, popularized by the word2vec, GloVe, and fastText libraries, map
words in a vocabulary to real vectors.

The vectors attempt to capture the semantics of the words, so that similar words have
similar vectors. Some embeddings also capture relationships between words, such as
"king is to queen as man is to woman". In vector form, this relationship is king – man +
woman = queen.

Creation
Create a word embedding by either reading an embedding from a file using
readWordEmbedding, or by training an embedding using trainWordEmbedding.

Properties
Dimension — Dimension of word embedding
nonnegative integer

Dimension of the word embedding, specified as a nonnegative integer.
Example: 300

Vocabulary — Words in model
string vector

Words in the model, specified as a string vector.
Data Types: string

 wordEmbedding

1-37

Object Functions
ismember Test word is member of word embedding
vec2word Map embedding vector to word
word2vec Map word to embedding vector
writeWordEmbedding Write word embedding file

Examples
Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

king = word2vec(emb,"king");
man = word2vec(emb,"man");
woman = word2vec(emb,"woman");
word = vec2word(emb,king - man + woman)

word =
"queen"

Write Word Embedding to File

Train a word embedding and write it to a text file.

Train a word embedding using the example data returned by sonnetsDocuments. This
function returns preprocessed versions of Shakespeare's sonnets as a
tokenizedDocument array.

1 Functions — Alphabetical List

1-38

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data.

documents = sonnetsDocuments;
emb = trainWordEmbedding(documents)

Training: 100% Loss: 2.78156 Remaining time: 0 hours 0 minutes.

emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1×401 string]

Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb,filename)

Read the word embedding file using readWordEmbedding.

emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1×401 string]

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Explore Word Embedding

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

 wordEmbedding

1-39

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1x9999 string]

Map the words "king", "man" and "woman" to vectors using word2vec.

king = word2vec(emb,"king");
man = word2vec(emb,"man");
woman = word2vec(emb,"woman");

Map the vector king - man + woman to a word using vec2word.

word = vec2word(emb,king - man + woman)

word =
"queen"

Find Closest Words to Vector

Find the top five closest words to a word embedding vector and their distances.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1×9999 string]

Map the words "king", "man" and "woman" to vectors using word2vec.

king = word2vec(emb,"king");
man = word2vec(emb,"man");
woman = word2vec(emb,"woman");

1 Functions — Alphabetical List

1-40

Map the vector king - man + woman to a word using vec2word. Find the top five
closest words using the Euclidean distance metric.

k = 5;
M = king - man + woman;
[words,dist] = vec2word(emb,M,k, ...
 'Distance','euclidean');

Plot the words and distances in a bar chart.

figure;
bar(dist)
xticklabels(words)
xlabel("Word")
ylabel("Distance")
title("Distances to Vector")

 wordEmbedding

1-41

• “Visualize Word Embeddings Using Text Scatter Plots”
• “Prepare Text Data for Analysis”
• “Extract Text Data From Files”

See Also
textscatter | textscatter3

Topics
“Visualize Word Embeddings Using Text Scatter Plots”

1 Functions — Alphabetical List

1-42

“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

 wordEmbedding

1-43

TextScatter Properties
Control text scatter chart appearance and behavior

Description
TextScatter properties control the appearance and behavior of TextScatter object.
By changing property values, you can modify certain aspects of the text scatter chart.

Properties
Text

TextData — Text labels
string array | cell array of character vectors

Text labels, specified as a string array, or a cell array of character vectors.
Example: ["word1" "word2" "word3"]
Data Types: string | cell

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified by a scalar from 0 through 100. To show all
text, set TextDensityPercentage to 100. To show no text, set
TextDensityPercentage to 0.

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the
text labels to this length and adds ellipses at the point of truncation.

1 Functions — Alphabetical List

1-44

Example: 10

Font Style

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as the name of the font to use or 'FixedWidth'. To display and
print properly, the font name must be a font that your system supports. The default font
depends on the specific operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The
'FixedWidth' value relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.
Example: 'Cambria'

FontSize — Font size
10 (default) | scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. One point equals
1/72 inch. To change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'. Not all fonts have both font styles.
Therefore, the italic font might look the same as the normal font.

FontWeight — Thickness of text characters
'normal' (default) | 'bold'

Thickness of the text characters, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than normal

 TextScatter Properties

1-45

MATLAB® uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight
still can result in the normal font weight.

FontSmoothing — Smooth font character appearance
'on' (default) | 'off'

Smooth font character appearance, specified as one of these values:

• 'on' — Apply font smoothing. Reduce the appearance of jaggedness in the text
characters to make the text easier to read.

• 'off' — Do not apply font smoothing.

Text Box

EdgeColor — Color of box outline
'none' (default) | RGB triplet | character vector of color name

Color of box outline, specified as 'none', a three-element RGB triplet, or a character
vector of a color name. The default edge color of 'none' makes the box outline invisible.

An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors
by name. This table lists the long and short color name options and the equivalent RGB
triplet values.
Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Example: 'blue'

1 Functions — Alphabetical List

1-46

Example: [0 0 1]

BackgroundColor — Color of text box background
'none' (default) | 'data' | RGB triplet

Color of text box background, specified as one of these values:

• 'none'— Make the text box background transparent
• 'data'— Use background color specified by ColorData. The software automatically

chooses a foreground to complement the background color.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a

three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1], for
example, [0.5 0.6 0.7].

Example: [1 0 0]

Margin — Space around text within the text box
3 (default) | positive scalar

The space around the text within the text box, specified as a positive scalar in point
units.

MATLAB uses the Extent property value plus the Margin property value to determine
the size of the text box.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Markers

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

'auto' — For each marker, use the same color as the corresponding text labels.

• 'none' — do not show markers.

 TextScatter Properties

1-47

• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1], for
example, [0.5 0.6 0.7].

Example: [1 0 0]

MarkerSize — Marker size
6 (default) | positive scalar

Marker size, specified as a positive scalar.
Example: 10

Data

XData — x values
[] (default) | scalar | vector

x values, specified as a scalar or a vector. The text scatter plot displays an individual
marker for each value in XData.

The input argument X to the textscatter and textscatter3 functions set the x
values. XData and YData must have equal lengths.
Example: [1 2 4 2 6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataSource — Variable linked to XData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to XData, specified as a character vector containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the XData.

By default, there is no linked variable so the value is an empty character vector, ''. If
you link a variable, then MATLAB does not update the XData values immediately. To
force an update of the data values, use the refreshdata function.

1 Functions — Alphabetical List

1-48

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y values
[] (default) | scalar | vector

y values, specified as a scalar or a vector. The text scatter plot displays an individual
marker for each value in YData.

The input argument Y to the textscatter and textscatter3 functions set the y
values. XData and YData must have equal lengths.
Example: [1 3 3 4 6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YDataSource — Variable linked to YData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to YData, specified as a character vector containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the YData.

By default, there is no linked variable so the value is an empty character vector, ''. If
you link a variable, then MATLAB does not update the YData values immediately. To
force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

ZData — z values
[] (default) | scalar | vector

 TextScatter Properties

1-49

z values, specified as a scalar or a vector.

• For 2-D scatter plots, ZData is empty by default.
• For 3-D scatter plots, the input argument Z to the scatter3 function sets the z

values. XData, YData, and ZData must have equal lengths.

Example: [1 2 2 1 0]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ZDataSource — Variable linked to ZData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to ZData, specified as a character vector containing a MATLAB
workspace variable name. MATLAB evaluates the variable in the base workspace to
generate the ZData.

By default, there is no linked variable so the value is an empty character vector, ''. If
you link a variable, then MATLAB does not update the ZData values immediately. To
force an update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'z'

ColorData — Text colors
[] (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

• RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1], for
example, [0.5 0.6 0.7].

• Three-column matrix of RGB triplets — Use a different color for each text label in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of text labels.

1 Functions — Alphabetical List

1-50

• Categorical vector — Use a different color for each category in the vector. Specify
ColorData as a vector the same length as XData. Specify the colors for each category
using the Colors property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0,1], for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes.
Example: [1 0 0; 0 1 0; 0 0 1]
Visibility

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

Identifiers

Type — Type of graphics object
'textscatter'

This property is read-only.

Type of graphics object, returned as 'textscatter'. Use this property to find all objects
of a given type within a plotting hierarchy, for example, searching for the type using
findobj.

Tag — User-specified tag
'' (default) | character vector

This property is read-only.

 TextScatter Properties

1-51

User-specified tag to associate with the object, specified as a character vector. Tags
provide a way to identify graphics objects. Use this property to find all objects with a
specific tag within a plotting hierarchy, for example, searching for the tag using
findobj.
Example: 'January Data'

UserData — Data to associate with the object
[] (default) | any MATLAB data

This property is read-only.

Data to associate with the object, specified as any MATLAB data, for example, a scalar,
vector, matrix, cell array, character array, table, or structure. MATLAB does not use this
data.

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

DisplayName — Text used for legend label
'' (default) | character vector

This property is read-only.

Text used for the legend label, specified as a character vector. If you do not specify the
text, then the legend uses a label of the form 'dataN'. The legend does not display until
you call the legend command.
Example: 'Label Text'

Annotation — Control for including or excluding object from legend
Annotation object

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, exclude a stem chart from the legend.

1 Functions — Alphabetical List

1-52

p = plot(1:10,'DisplayName','Line Chart');
hold on
s = stem(1:10,'DisplayName','Stem Chart');
hold off
s.Annotation.LegendInformation.IconDisplayStyle = 'off';
legend('show')

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include.

p = plot(1:10,'DisplayName','Line Chart');
hold on
s = stem(1:10,'DisplayName','Stem Chart');
hold off
legend(p)

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command-line, but allows callback functions to
access it.

 TextScatter Properties

1-53

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. This includes get, findobj, gca, gcf, gco, newplot, cla, clf, and
close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Interactive Control

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — You can access properties of the clicked object from within the
callback function.

• Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

Example: @myCallback
Example: {@myCallback,arg3}

1 Functions — Alphabetical List

1-54

UIContextMenu — Context menu
uicontextmenu object

Context menu, specified as a uicontextmenu object. Use this property to display a
context menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets
its Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles when selected
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callback Execution Control

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Can capture mouse clicks when visible. The Visible property must be
set to 'on' and you must click a part of the TextScatter object that has a defined
color. You cannot click a part that has an associated color property set to 'none'. If

 TextScatter Properties

1-55

the plot contains markers, then the entire marker is clickable if either the edge or the
fill has a defined color. The HitTest property determines if the TextScatter object
responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the TextScatter object passes the
click to the object below it in the current view of the figure window. The HitTest
property of the TextScatter object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the TextScatter object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the TextScatter object
that has a HitTest property set to 'on' and a PickableParts property value that
enables the ancestor to capture mouse clicks.

Note The PickableParts property determines if the TextScatter object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is allowed. If interruption is not allowed, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

1 Functions — Alphabetical List

1-56

If the ButtonDownFcn callback of the TextScatter object is the running callback, then
the Interruptible property determines if it another callback can interrupt it:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB
processes the queue, such as when there is a drawnow, figure, getframe, waitfor,
or pause command.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution” (MATLAB).

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Note There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is allowed. If interruption is not allowed, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue.

If the ButtonDownFcn callback of the TextScatter object tries to interrupt a running
callback that cannot be interrupted, then the BusyAction property determines if it is
discarded or put in the queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the
running callback finishes execution. This is the default behavior.

 TextScatter Properties

1-57

• 'cancel' — Discard the interrupting callback.

Creation and Deletion Control

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. Setting the CreateFcn
property on an existing object has no effect. You must define a default value for this
property, or define this property using a Name,Value pair during object creation.
MATLAB executes the callback after creating the object and setting all of its properties.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Created object — You can access properties of the object from within the callback
function. You also can access the object through the CallbackObject property of the
root, which can be queried using the gcbo function.

• Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).
Example: @myCallback
Example: {@myCallback,arg3}

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle

1 Functions — Alphabetical List

1-58

• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you delete the objectMATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Deleted object — You can access properties of the object from within the callback
function. You also can access the object through the CallbackObject property of the
root, which can be queried using the gcbo function.

• Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).
Example: @myCallback
Example: {@myCallback,arg3}

BeingDeleted — Deletion status
'off' (default) | 'on'

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

See Also
textscatter | textscatter3 | wordcloud

Topics
“Visualize Word Embeddings Using Text Scatter Plots”

 TextScatter Properties

1-59

“Visualize Text Data Using Word Clouds”
“Prepare Text Data for Analysis”
“Analyze Text Data Using Topic Models”

Introduced in R2017b

1 Functions — Alphabetical List

1-60

addDocument
Add documents to bag-of-words model

Syntax
newBag = addDocument(bag,documents)

Description
newBag = addDocument(bag,documents) adds documents to the bag-of-words model
bag.

Examples

Add Documents to Bag-of-Words Model

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

Create another array of tokenized documents and add it to the same bag-of-words model.

documents = tokenizedDocument([
 "a third example of a short sentence"

 addDocument

1-61

 "another short sentence"]);
newBag = addDocument(bag,documents)

newBag =
bagOfWords with 9 words and 4 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1
 …

Import Text Data Using a File Datastore

Import three example sonnet text files using a file datastore.

Create a file datastore for the example sonnet text files. The example sonnets have
filenames "exampleSonnet1.txt", "exampleSonnet2.txt", and
"exampleSonnet3.txt". Specify the read function to be extractFileText.

fds = fileDatastore('exampleSonnet*.txt','ReadFcn',@extractFileText)

fds =
 FileDatastore with properties:

 Files: {
 ' ...\ib3A4F7C\26\tp410e6e2b\textanalytics-ex73762432\exampleSonnet1.txt';
 ' ...\ib3A4F7C\26\tp410e6e2b\textanalytics-ex73762432\exampleSonnet2.txt';
 ' ...\ib3A4F7C\26\tp410e6e2b\textanalytics-ex73762432\exampleSonnet3.txt'
 }
 UniformRead: 0
 ReadFcn: @extractFileText

Create an empty bag-of-words model.

bag = bagOfWords

bag =
Empty bagOfWords

Loop over the files in the datastore and read each file. Tokenize the text and add the
document to bag.

1 Functions — Alphabetical List

1-62

while hasdata(fds)
 str = read(fds);
 document = tokenizedDocument(str);
 bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag

bag =
bagOfWords with 224 words and 3 documents:

 From fairest creatures we desire …
 1 1 1 1 1
 0 0 0 0 0
 …

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row of the words of a single document.

Output Arguments
newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

 addDocument

1-63

See Also
bagOfWords | removeDocument | removeEmptyDocuments | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-64

context
Search documents for word occurrences in context

Syntax
T = context(documents,word)
T = context(documents,word,contextLength)
T = context(___ ,'Source',Source)

Description
T = context(documents,word) searches for occurrences of word in documents and
returns a table showing word in context and its locations.

T = context(documents,word,contextLength) specifies the length of the context
to return.

T = context(___ ,'Source',Source) displays the context in the original source
string source if the word is found.

Examples

Search Documents for Word Occurrences

Load the sonnetsDocuments data. sonnetsDocuments returns a
tokenizedDocument array of preprocessed versions of Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data.

 context

1-65

documents = sonnetsDocuments;
documents(1:10)

ans =

 10x1 tokenizedDocument:

 (1,1) 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 (2,1) 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 (3,1) 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 (4,1) 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 (5,1) 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 (6,1) 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 (7,1) 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 (8,1) 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 (9,1) 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
(10,1) 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Search for the word "life".

T = context(documents,"life")

T =

 23x3 table

 Context Document Word
 __ ________ ____

 "consumst thy self single life ah thou issueless shalt " 9 10
 "ainted counterfeit lines life life repair times pencil" 16 35
 "d counterfeit lines life life repair times pencil pupi" 16 36
 " heaven knows tomb hides life shows half parts write b" 17 14
 "he eyes long lives gives life thee " 18 69
 "tender embassy love thee life made four two alone sink" 45 23
 "ves beauty though lovers life beauty shall black lines" 63 50
 "s shorn away live second life second head ere beautys " 68 27
 "e rehearse let love even life decay lest wise world lo" 71 46
 "st bail shall carry away life hath line interest memor" 74 8
 "art thou hast lost dregs life prey worms body dead cow" 74 36
 " thoughts food life sweetseasond showers gro" 75 3
 "tten name hence immortal life shall though once gone w" 81 18

1 Functions — Alphabetical List

1-66

 " beauty mute others give life bring tomb lives life fa" 83 45
 "ve life bring tomb lives life fair eyes poets praise d" 83 49
 " steal thyself away term life thou art assured mine li" 92 7
 "fe thou art assured mine life longer thy love stay dep" 92 12
 " fear worst wrongs least life hath end better state be" 92 26
 "anst vex inconstant mind life thy revolt doth lie o ha" 92 41
 " fame faster time wastes life thou preventst scythe cr" 100 69
 "ess harmful deeds better life provide public means pub" 111 10
 "ate hate away threw savd life saying " 145 51
 " many nymphs vowd chaste life keep came tripping maide" 154 15

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Specify Context Length

Load the sonnetsDocuments data. sonnetsDocuments returns a
tokenizedDocument array of preprocessed versions of Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data.

documents = sonnetsDocuments;
documents(1:10)

ans =

 10x1 tokenizedDocument:

 (1,1) 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 (2,1) 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 (3,1) 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 (4,1) 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 (5,1) 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 (6,1) 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 (7,1) 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son

 context

1-67

 (8,1) 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 (9,1) 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
(10,1) 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Search for the word "life" and return each occurrence with a 15-character context before
and after.

T = context(documents,"life",15)

T =

 23x3 table

 Context Document Word
 ____________________________________ ________ ____

 "hy self single life ah thou issuel" 9 10
 "nterfeit lines life life repair ti" 16 35
 "eit lines life life repair times p" 16 36
 "ows tomb hides life shows half par" 17 14
 "ng lives gives life thee " 18 69
 "assy love thee life made four two " 45 23
 " though lovers life beauty shall b" 63 50
 "ay live second life second head er" 68 27
 " let love even life decay lest wis" 71 46
 "all carry away life hath line inte" 74 8
 "ast lost dregs life prey worms bod" 74 36
 " thoughts food life sweetseasond s" 75 3
 "hence immortal life shall though o" 81 18
 "te others give life bring tomb liv" 83 45
 "ing tomb lives life fair eyes poet" 83 49
 "self away term life thou art assur" 92 7
 "t assured mine life longer thy lov" 92 12
 "t wrongs least life hath end bette" 92 26
 "nconstant mind life thy revolt dot" 92 41
 "er time wastes life thou preventst" 100 69
 "l deeds better life provide public" 111 10
 "way threw savd life saying " 145 51
 "hs vowd chaste life keep came trip" 154 15

Remove the example folder from the path using rmpath.

1 Functions — Alphabetical List

1-68

rmpath(exampleFolder)

Specify Source Text

Specify source text to display context.

Load the sonnets.txt data and split it into separate documents.

txt = extractFileText("sonnets.txt");
paragraphs = split(txt,[newline newline]);

Extract the sonnets from paragraphs. The first sonnet is the fifth element of
paragraphs, and the remaining sonnets appear in every second element afterwards.

sonnets = paragraphs(5:2:end);
documents = tokenizedDocument(sonnets);

Normalize the text, then search for the word "life".

documentsNormalized = normalizeWords(documents);
T = context(documentsNormalized,"life")

T =

 23x3 table

 Context Document Word
 __ ________ ____

 "sum'st thy self in singl life ? ah ! if thou issueless" 9 18
 " : so should the line of life that life repair , which" 16 73
 "ld the line of life that life repair , which thi , tim" 16 75
 "s a tomb which hide your life , and show not half your" 17 34
 " live thi , and thi give life to thee . " 18 128
 "ssi of love to thee , my life , be made of four , with" 45 53
 "eauti , though my lover' life : hi beauti shall in the" 63 100
 " awai , to live a second life on second head ; er beau" 68 59
 "t your love even with my life decai ; lest the wise wo" 71 118
 "shall carri me awai , my life hath in thi line some in" 74 18
 "ast but lost the dreg of life , the prei of worm , my " 74 83
 "to my thought as food to life , or as sweet-season'd s" 75 10
 "ur name from henc immort life shall have , though i , " 81 42

 context

1-69

 " , when other would give life , and bring a tomb . the" 83 108
 "a tomb . there live more life in on of your fair ey th" 83 118
 "yself awai , for term of life thou art assur mine ; an" 92 13
 "hou art assur mine ; and life no longer than thy love " 92 20
 " in the least of them my life hath end . i see a bette" 92 56
 "onst mind , sinc that my life on thy revolt doth lie ." 92 89
 "me faster than time wast life , so thou prevent'st hi " 100 118
 "at did not better for my life provid than public mean " 111 26
 "she threw , and sav'd my life , sai ' not you ' . " 145 113
 "i nymph that vow'd chast life to keep came trip by ; b" 154 22

Since the words are normalized, the contexts may not be easy to read. To view the
contexts using the original text data, specify the source text using the 'Source' option.

T = context(documentsNormalized,"life",'Source',sonnets)

T =

 23x3 table

 Context Document Word
 __ ________ ____

 "um'st thy self in single life? Ah! if thou issueless s" 9 18
 ": So should the lines of life that life repair, Which " 16 73
 "d the lines of life that life repair, Which this, Time" 16 75
 " a tomb Which hides your life, and shows not half your" 17 34
 "ves this, and this gives life to thee. " 18 128
 "assy of love to thee, My life, being made of four, wit" 45 53
 "eauty, though my lover's life: His beauty shall in the" 63 100
 "n away, To live a second life on second head; Ere beau" 68 59
 "t your love even with my life decay; Lest the wise wor" 71 118
 " shall carry me away, My life hath in this line some i" 74 18
 "st but lost the dregs of life, The prey of worms, my b" 74 83
 "o my thoughts as food to life, Or as sweet-season'd sh" 75 10
 "name from hence immortal life shall have, Though I, on" 81 42
 ", When others would give life, and bring a tomb. There" 83 108
 "a tomb. There lives more life in one of your fair eyes" 83 118
 "hyself away, For term of life thou art assured mine; A" 92 13
 "ou art assured mine; And life no longer than thy love " 92 20
 " in the least of them my life hath end. I see a better" 92 56
 "tant mind, Since that my life on thy revolt doth lie. " 92 89
 " faster than Time wastes life, So thou prevent'st his " 100 118

1 Functions — Alphabetical List

1-70

 "at did not better for my life provide Than public mean" 111 26
 " she threw, And sav'd my life, saying 'not you'. " 145 113
 "nymphs that vow'd chaste life to keep Came tripping by" 154 22

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

word — Word to find
scalar string | character vector | scalar cell array

Word to find in context, specified as a scalar string, character vector, or scalar cell array
containing a character vector.
Data Types: char | string | cell

contextLength — Context length
25 (default) | positive integer

Context length, specified as a positive integer.

Source — Source text
string array | cell array of character vectors

Source text, specified as the comma-separated pair consisting of 'Source' and a string
array or a cell array of character vectors. If the input documents are preprocessed, and
you have the source text, then you can use this option to make the output more readable.

The source text must be the same size as documents.

Output Arguments
T — Table of contexts
table

Table of contexts with these columns:

 context

1-71

Context String containing the queried word in context
Document Numeric index of the document containing the word
Word Numeric index of the word in the document

See Also
doc2cell | doclength | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-72

decodeHTMLEntities
Convert HTML and XML entities into characters

Syntax
newStr = decodeHTMLEntities(str)

Description
newStr = decodeHTMLEntities(str) replaces HTML and XML character entities
and numeric character references in the elements of str with their unicode equivalent.

Examples

Replace HTML Entities with Unicode

Replace HTML character entities with their unicode equivalent.

str = ["<>" "R&D"];
newStr = decodeHTMLEntities(str)

newStr = 1×2 string array
 "<>" "R&D"

Replace HTML numeric character references with their unicode equivalent. Unicode
character with hex code is a space.

str = "R D";
newStr = decodeHTMLEntities(str)

newStr =
"R D"

 decodeHTMLEntities

1-73

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]
Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also
erasePunctuation | eraseTags | eraseURLs | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-74

doclength
Length of documents in document array

Syntax
N = doclength(documents)

Description
N = doclength(documents) returns the number of words in each document in
documents.

Examples

Find Number of Words in Documents

Find the number of words in an array of tokenized documents. Erase the punctuation
characters so they do not get counted as words.

str = [...
 "An example of a short sentence."
 "A second short sentence."];
str = erasePunctuation(str)

str = 2x1 string array
 "An example of a short sentence"
 "A second short sentence"

str = lower(str)

str = 2x1 string array
 "an example of a short sentence"
 "a second short sentence"

 doclength

1-75

documents = tokenizedDocument(str)

documents =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

N = doclength(documents)

N =

 6
 4

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
N — Document lengths
vector of nonnegative integers

Document lengths, returned as a vector of nonnegative integers. The size of N is the same
as the size of documents.

See Also
context | doc2cell | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”

1 Functions — Alphabetical List

1-76

“Create Simple Text Model for Classification”

Introduced in R2017b

 doclength

1-77

doc2cell
Convert documents to cell array of string vectors

Syntax
C = doc2cell(documents)

Description
C = doc2cell(documents) converts a tokenizedDocument array to a cell array. The
entries of C are string arrays containing the corresponding words in each document.

Examples

Convert Document Array to Cell Array

Convert a tokenizedDocument array to a cell array of string vectors.

documents = tokenizedDocument([...
 "an example of a short sentence" ...
 "a second short sentence"])

documents =
 1x2 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(1,2) 4 tokens: a second short sentence

C = doc2cell(documents)

C = 1x2 cell array
 {1x6 string} {1x4 string}

View the first element of the cell array.

1 Functions — Alphabetical List

1-78

C{1}

ans = 1x6 string array
 "an" "example" "of" "a" "short" "sentence"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
C — Output cell array
cell array of string vectors

Output cell array of string vectors. Each element of C is a string vector containing the
words of the corresponding document.

See Also
context | doclength | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 doc2cell

1-79

docfun
Apply function to words in documents

Syntax
newDocuments = docfun(func,documents)
newDocuments = docfun(func,documents1,...,documentsN)

Description
newDocuments = docfun(func,documents) calls the function specified by the
function handle func and passes elements of documents as a string vector of words. The
words of newDocuments(i) are the output of func(string(documents(i))).

The docfun function does not perform the calls to function func in a specific order.

newDocuments = docfun(func,documents1,...,documentsN) calls the function
specified by the function handle func and passes elements of documents1,
…,documentsN as string vectors of words, where N is the number of inputs to the
function func. The words of newDocuments(i) are the output of
func(string(documents1(i)),...,string(documentsN(i))).

Each of documents1,…,documentsN must be the same size.

Examples

Reverse Words in Documents

Apply reverse to each word in a document array.

documents = tokenizedDocument([...
 "an example of a short sentence"
 "a second short sentence"])

1 Functions — Alphabetical List

1-80

documents =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

func = @reverse;
newDocuments = docfun(func,documents)

newDocuments =
 2x1 tokenizedDocument:

(1,1) 6 tokens: na elpmaxe fo a trohs ecnetnes
(2,1) 4 tokens: a dnoces trohs ecnetnes

Specify Document Function with Multiple Inputs

Tag words by combining the words from one document array with another, using the
string function plus.

Create the first tokenizedDocument array. Erase the punctuation and convert the text
to lowercase.

str = [...
 "An example of a short sentence."
 "A second short sentence."];
str = erasePunctuation(str);
str = lower(str);
documents1 = tokenizedDocument(str)

documents1 =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Create the second tokenizedDocument array. The documents have the same number of
words as the corresponding documents in documents1. The words of documents2 are
POS tags for the corresponding words.

 docfun

1-81

documents2 = tokenizedDocument([...
 "_det _noun _prep _det _adj _noun"
 "_det _adj _adj _noun"])

documents2 =
 2x1 tokenizedDocument:

(1,1) 6 tokens: _det _noun _prep _det _adj _noun
(2,1) 4 tokens: _det _adj _adj _noun

func = @plus;
newDocuments = docfun(func,documents1,documents2)

newDocuments =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an_det example_noun of_prep a_det short_adj sentence_noun
(2,1) 4 tokens: a_det second_adj short_adj sentence_noun

The output is not the same as calling plus on the documents directly.

plus(documents1,documents2)

ans =
 2x1 tokenizedDocument:

(1,1) 12 tokens: an example of a short sentence _det _noun _prep _det _adj _noun
(2,1) 8 tokens: a second short sentence _det _adj _adj _noun

Input Arguments
func — Function handle
function handle

Function handle that accepts N string arrays as inputs and outputs a string array. func
must accept string(documents1(i)),...,string(documentsN(i)) as input.
Example: @reverse
Data Types: function_handle

1 Functions — Alphabetical List

1-82

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
bagOfWords | lower | normalizeWords | regexprep | replace |
tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 docfun

1-83

encode
Encode documents as matrix of word counts

Use encode to encode an array of tokenized documents as a matrix of word counts
according to a bag-of-words model. To ensure that the documents are encoded correctly,
you must preprocess the input documents using the same steps as the documents used to
create the bag-of-words model. For an example showing how to create a function to
preprocess text data, see “Prepare Text Data for Analysis”.

Syntax
counts = encode(bag,documents)
counts = encode(bag,words)
counts = encode(___ ,'DocumentsIn',DocumentsIn)

Description
counts = encode(bag,documents) returns a matrix of word counts for documents
based on the bag-of-words model bag.

counts = encode(bag,words) returns a matrix of word counts for the elements of
words.

counts = encode(___ ,'DocumentsIn',DocumentsIn) specifies the orientation of
the output word counts.

Examples

Encode Documents as Word Count Matrix

Encode an array of documents as a matrix of word counts.

documents = tokenizedDocument([
 "an example of a short sentence"

1 Functions — Alphabetical List

1-84

 "a second short sentence"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

documents = tokenizedDocument([
 "a new sentence"
 "a second new sentence"])

documents =
 2x1 tokenizedDocument:

(1,1) 3 tokens: a new sentence
(2,1) 4 tokens: a second new sentence

View the documents encoded as a matrix of word counts. The word "new" does not appear
in bag, so it is not counted.

counts = encode(bag,documents);
full(counts)

ans =

 0 0 0 1 0 1 0
 0 0 0 1 0 1 1

The columns correspond to the vocabulary of the bag-of-words model.

bag.Vocabulary

ans = 1x7 string array
 "an" "example" "of" "a" "short" "sentence" "second"

 encode

1-85

Encode Words as Word Count Vector

Encode an array of words as a vector of word counts.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

words = ["another" "example" "of" "a" "short" "example" "sentence"];
counts = encode(bag,words)

counts =
 (1,2) 2
 (1,3) 1
 (1,4) 1
 (1,5) 1
 (1,6) 1

Output Document Word Counts in Columns

Encode an array of documents as a matrix of word counts with documents in columns.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

1 Functions — Alphabetical List

1-86

documents = tokenizedDocument([
 "a new sentence"
 "a second new sentence"])

documents =
 2x1 tokenizedDocument:

(1,1) 3 tokens: a new sentence
(2,1) 4 tokens: a second new sentence

View the documents encoded as a matrix of word counts with documents in columns. The
word "new" does not appear in bag, so it is not counted.

counts = encode(bag,documents,'DocumentsIn','columns');
full(counts)

ans =

 0 0
 0 0
 0 0
 1 1
 0 0
 1 1
 0 1

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row of the words of a single document.

 encode

1-87

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

DocumentsIn — Orientation of output documents
'rows' (default) | 'columns'

Orientation of output documents in the word count matrix, specified as the comma-
separated pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Return a matrix of word counts with rows corresponding to documents.
• 'columns' – Return a transposed matrix of word counts with columns corresponding

to documents.

Data Types: char

Output Arguments
counts — Word counts
sparse matrix

Word counts, returned as a sparse matrix of nonnegative integers.

See Also
bagOfWords | tfidf | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-88

erasePunctuation
Erase punctuation from text and documents

Syntax
newStr = erasePunctuation(str)
newDocuments = erasePunctuation(documents)

Description
newStr = erasePunctuation(str) erases punctuation and symbols from the
elements of str. The function removes characters that belong to the Unicode
punctuation or symbol classes.

newDocuments = erasePunctuation(documents) erases punctuation and symbols
from documents. If a word is empty after removing punctuation and symbol characters,
then the function removes it.

Examples

Erase Punctuation from Text

Erase the punctuation from the text in str.

str = "it's one and/or two.";
newStr = erasePunctuation(str)

newStr =
"its one andor two"

To insert a space where the "/" symbol is, use the replace function.

newStr = replace(str,"/"," ")

 erasePunctuation

1-89

newStr =
"it's one and or two."

newStr = erasePunctuation(newStr)

newStr =
"its one and or two"

Erase Punctuation from Documents

Erase the punctuation from an array of documents.

documents = tokenizedDocument([...
 "An example of a short sentence."
 "A short, small, and simple sentence"])

documents =
 2x1 tokenizedDocument:

(1,1) 7 tokens: An example of a short sentence .
(2,1) 8 tokens: A short , small , and simple sentence

newDocuments = erasePunctuation(documents)

newDocuments =
 2x1 tokenizedDocument:

(1,1) 6 tokens: An example of a short sentence
(2,1) 6 tokens: A short small and simple sentence

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]

1 Functions — Alphabetical List

1-90

Data Types: string | char | cell

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character
vectors. str and newStr have the same data type.

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
decodeHTMLEntities | eraseTags | eraseURLs | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 erasePunctuation

1-91

eraseTags
Erase HTML and XML tags from text

Syntax
newStr = eraseTags(str)

Description
newStr = eraseTags(str) erases HTML and XML comments and tags from the
elements of str.

The function erases comments and tags with tag name a, abbr, acronym, b, bdi, bdo,
big, code, del, dfn, em, font, i, ins, kbd, mark, rp, rt, ruby, s, small, span,
strike, strong sub, sup, tt, u, var and wbr, and replaces all other tags with a space.

The function does not remove HTML and XML elements (the tags as well anything
between start and end tags). For example, eraseTags("x<a>y") returns the
string "xy". It only removes the tags <a> and , and does not remove the element
<a>y.

Examples

Erase HTML and XML Tags and Comments

Erase the tags from some HTML code. The function replaces the
 tag with a space.

htmlCode = "one.
two";
newStr = eraseTags(htmlCode)

newStr =
"one. two"

1 Functions — Alphabetical List

1-92

Erase the tags from some XML code. The function removes the <sub> tags and does not
replace them with a space.

xmlCode = "H₂O";
newStr = eraseTags(xmlCode)

newStr =
"H2O"

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]
Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also
decodeHTMLEntities | erasePunctuation | eraseURLs | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 eraseTags

1-93

eraseURLs
Erase HTTP and HTTPS URLs from text

Syntax
newStr = eraseURLs(str)

Description
newStr = eraseURLs(str) erases HTTP and HTTPS URLs from the elements of str.

Examples

Erase URL from Text

Erase the URL from the text in str.

str = "See http://mathworks.com for more information.";
newStr = eraseURLs(str)

newStr =
"See for more information."

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]
Data Types: string | char | cell

1 Functions — Alphabetical List

1-94

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 eraseURLs

1-95

fitlda
Fit latent Dirichlet allocation (LDA) model

Syntax
mdl = fitlda(bag,numTopics)
mdl = fitlda(counts,numTopics)
mdl = fitlda(___ ,Name,Value)

Description
mdl = fitlda(bag,numTopics) fits an LDA model with numTopics topics to a bag-of-
words model.

mdl = fitlda(counts,numTopics) fits an LDA model to the documents represented
by a matrix of word counts.

mdl = fitlda(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Fit LDA Model

Fit a Latent Dirichlet Allocation model to a collection of documents.

Load the sonnetsDocuments data and create a bag-of-words model.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

1 Functions — Alphabetical List

1-96

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)
bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LDA model with 20 topics.
numTopics = 20;
mdl = fitlda(bag,numTopics)
Initial topic assignments sampled in 0.0286443 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.01	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===
mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Visualize the first four topics using word clouds.

 fitlda

1-97

figure
for topicIdx = 1:4
 subplot(2,2,topicIdx)
 wordcloud(mdl,topicIdx);
 title("Topic: " + topicIdx)
end

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

1 Functions — Alphabetical List

1-98

Fit LDA Model to Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans =

 154 3092

size(uniqueWords)

ans =

 1 3092

Fit an LDA model with 20 topics. To train for longer, specify the maximum number of
iterations to 200.

numTopics = 20;
iterations = 200;
mdl = fitlda(counts,numTopics, ...
 'IterationLimit',iterations)

Initial topic assignments sampled in 0.0281689 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.01	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 fitlda

1-99

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

The vocabulary of the LDA model is automatically generated. To visualize a topic using a
word cloud, you must specify the words and size data manually. Input the vocabulary
and the desired column of the TopicWordProbabilities property of the LDA model to
wordcloud.

Visualize the first topic in a word cloud.

wordData = uniqueWords;
topicIdx = 1;
sizeData = mdl.TopicWordProbabilities(:,topicIdx);
figure
wordcloud(wordData,sizeData)

ans =
 WordCloudChart with properties:

 WordData: [1×3092 string]
 SizeData: [1×3092 double]
 MaxDisplayWords: 100

 Show all properties

1 Functions — Alphabetical List

1-100

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

numTopics — Number of topics
positive integer

Number of topics, specified as a positive integer.

 fitlda

1-101

Example: 200

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Solver','avb' specifies to use approximate variational Bayes as the solver.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns

corresponding to documents.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

This option only applies if you specify the input documents as a matrix of word counts.
Data Types: char

FitTopicConcentraion — Option for fitting topic concentration parameter
true (default) | false

1 Functions — Alphabetical List

1-102

Option for fitting topic concentration parameter, specified as the comma-separated pair
consisting of 'FitTopicConcentration' and either true or false. If true, then the
function fits the scalar concentration parameter in the Dirichlet prior.
Example: 'FitTopicConcentration',false
Data Types: logical

FitTopicProbabilities — Option for fitting topic probabilities
true (default) | false

Option for fitting topic probabilities, specified as the comma-separated pair consisting of
'FitTopicProbabilities' and either true or false. If true, then the function fits
the topic probabilities.
Example: 'FitTopicProbabilities',false
Data Types: logical

InitialTopicConcentration — Initial estimate of topic concentration
numTopics/4 (default) | nonnegative scalar

Initial estimate of topic concentration, specified as the comma-separated pair consisting
of 'InitialTopicConcentration and a nonnegative scalar. The function sets the
concentration per topic to TopicConcentration/numTopics.
Example: 'InitialTopicConcentration',25

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

 fitlda

1-103

Solver — Solver for optimization
'cgs' (default) | 'avb' | 'cvb0'

Solver for optimization, specified as the comma-separated pair consisting of 'Solver'
and one of the following:

• 'cgs' – Use collapsed Gibbs sampling. This solver can be more accurate than
approximate variational Bayes at the cost of taking longer to run. The resume
function does not support models fitted with collapsed Gibbs sampling.

• 'avb' – Use approximate variational Bayes. This solver typically runs quicker than
collapsed Gibbs sampling and collapsed variational Bayes, but can be less accurate.

• 'cvb0' – Use collapsed variational Bayes, zeroth order.

The resume function does not support collapsed Gibbs sampling.
Example: 'Solver','avb'
Data Types: char

ValidationData — Validation data to monitor optimization convergence
[] (default) | bagOfWords object | sparse matrix of word counts

Validation data to monitor optimization convergence, specified as the comma-separated
pair consisting of 'ValidationData' and a bagOfWords object, or a sparse matrix of
word counts. If the validation data is a matrix, then the data must have the same
orientation and the same number of words as the input documents.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

• 0 – Do not display verbose output.
• 1 – Display progress information.

Example: 'Verbose',0

WordConcentration — Word concentration parameter
1 (default) | nonnegative scalar

1 Functions — Alphabetical List

1-104

Word concentration parameter, specified as a nonnegative scalar. The software sets the
concentration per word to WordConcentration/numWords where numWords is the
vocabulary size of the input documents.

Output Arguments
mdl — Output LDA model
ldaModel object

Output LDA model, returned as an ldaModel object.

See Also
bagOfWords | fitlsa | ldaModel | logp | lsaModel | predict | resume |
transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

 fitlda

1-105

fitlsa
Fit LSA model

Syntax
mdl = fitlsa(bag,numComponents)
mdl = fitlsa(counts,numComponents)
mdl = fitlsa(___ ,Name,Value)

Description
mdl = fitlsa(bag,numComponents) fits an LSA model with numComponents
components to the bag-of-words model bag.

mdl = fitlsa(counts,numComponents) fits an LSA model to the documents
represented by the matrix of word counts counts.

mdl = fitlsa(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Fit LSA Model

Fit a Latent Semantic Analysis model to a collection of documents.

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

1 Functions — Alphabetical List

1-106

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LSA model with 20 components.

numComponents = 20;
mdl = fitlsa(bag,numComponents)

mdl =
 lsaModel with properties:

 NumComponents: 20
 ComponentWeights: [2.7866e+03 515.5889 443.6428 316.4191 295.4065 261.8927 226.1649 186.2160 170.6413 156.6033 151.5275 146.2553 141.6741 135.5318 134.1694 128.9931 124.2382 122.2931 116.5035 116.2590]
 DocumentScores: [154×20 double]
 WordScores: [3092×20 double]
 Vocabulary: [1×3092 string]
 FeatureStrengthExponent: 2

Transform new documents into lower dimensional space using the LSA model.

newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."
 "if music be the food of love, play on."]);
dscores = transform(mdl,newDocuments)

dscores =

 0.1338 0.1623 0.1680 -0.0541 -0.2464 -0.0134 0.2604 0.0205 0.1127 0.0627 0.3311 -0.2327 0.1689 -0.2695 0.0228 0.1241 0.1198 0.2535 -0.0607 0.0305
 0.2547 0.5576 -0.0095 0.5660 -0.0643 -0.1236 -0.0082 -0.0522 -0.0690 -0.0330 0.0385 0.0803 -0.0373 0.0384 -0.0005 0.1943 0.0207 0.0278 0.0001 -0.0469

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

 fitlsa

1-107

Fit LSA Model to Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts
corresponding to preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans =

 154 3092

Fit LSA model with 20 components. Set the feature strength exponent to 4.

numComponents = 20;
exponent = 4;
mdl = fitlsa(counts,numComponents, ...
 'FeatureStrengthExponent',exponent)

mdl =
 lsaModel with properties:

 NumComponents: 20
 ComponentWeights: [2.7866e+03 515.5889 443.6428 316.4191 295.4065 261.8927 226.1649 186.2160 170.6413 156.6033 151.5275 146.2553 141.6741 135.5318 134.1694 128.9931 124.2382 122.2931 116.5035 116.2590]
 DocumentScores: [154×20 double]
 WordScores: [3092×20 double]
 Vocabulary: [1×3092 string]
 FeatureStrengthExponent: 4

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

numComponents — Number of components
positive integer

1 Functions — Alphabetical List

1-108

Number of components, specified as a positive integer. This value must be less than the
number of the input documents, and the vocabulary size of the input documents.
Example: 200

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FeatureStrengthExponent',4 sets the feature strength exponent to 4.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns

corresponding to documents.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

This option only applies if you specify the input documents as a matrix of word counts.
Data Types: char

 fitlsa

1-109

FeatureStrengthExponent — Initial feature strength exponent
2 (default) | nonnegative scalar

Initial feature strength exponent, specified as a nonnegative scalar. This value scales the
feature component strengths for the documentScores, wordScores, and transform
functions.
Example: 'FeatureStrengthExponent',4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
mdl — Output LSA model
lsaModel object

Output LSA model, returned as an lsaModel object.

See Also
bagOfWords | fitlda | ldaModel | lsaModel | transform

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

1 Functions — Alphabetical List

1-110

ismember
Test word is member of word embedding

Syntax
tf = ismember(emb,words)

Description
tf = ismember(emb,words) returns an array containing logical 1 (true) where the
word in words is a member of the word embedding emb. Elsewhere, the array contains
logical 0 (false).

Examples

Word Member of Embedding

Test words are members of a word embedding.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1x9999 string]

Test if the words "I", "love", and "MATLAB" are in the embedding.

words = ["I" "love" "MATLAB"]

 ismember

1-111

words = 1x3 string array
 "I" "love" "MATLAB"

tf = ismember(emb,words)

tf = 1x3 logical array
 0 1 0

Input Arguments
emb — Input word embedding
word embedding

Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

See Also
readWordEmbedding | trainWordEmbedding | vec2word | word2vec |
wordEmbedding | writeWordEmbedding

Topics
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

1 Functions — Alphabetical List

1-112

joinWords
Convert documents to string by joining words

Syntax
newStr = joinWords(documents)
newStr = joinWords(documents,delim)

Description
newStr = joinWords(documents) converts a tokenizedDocument array to a string
array by joining the words in each document with a space.

newStr = joinWords(documents,delim) joins the words with delimiter delim
instead of a space.

Examples

Convert Documents to String by Joining Words

Convert a tokenizedDocument array to a string array by joining the words with a
space.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

str = joinWords(documents)

 joinWords

1-113

str = 2x1 string array
 "an example of a short sentence"
 "a second short sentence"

Convert a tokenizedDocument array to a string array by joining the words with an
underscore.

str = joinWords(documents,"_")

str = 2x1 string array
 "an_example_of_a_short_sentence"
 "a_second_short_sentence"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

delim — Delimiter to join words
scalar string | character vector | scalar cell array

Delimiter to join words, specified as a scalar string, character vector, or scalar cell array
containing a character vector.
Example: "_"
Example: '_'
Example: {'_'}
Data Types: char | string | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

1 Functions — Alphabetical List

1-114

Output text, returned as a string array, character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also
context | doc2cell | doclength | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 joinWords

1-115

logp
Document log-probabilities and goodness of fit of LDA model

Syntax
logProb = logp(ldaMdl,documents)
logProb = logp(ldaMdl,counts)
[logProb,ppl] = logp(___)
___ = logp(___ ,Name,Value)

Description
logProb = logp(ldaMdl,documents) returns the log-probabilities of documents
under the LDA model ldaMdl.

logProb = logp(ldaMdl,counts) returns the log-probabilities of the documents
represented by the matrix of word counts counts.

[logProb,ppl] = logp(___) returns the perplexity computed from the log-
probabilities.

___ = logp(___ ,Name,Value) specifies additional options using one or more name-
value pair arguments.

Examples

Calculate Document Log-Probabilities

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

1 Functions — Alphabetical List

1-116

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0218743 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.01	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5

 logp

1-117

 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Compute the document log-probabilities of the training documents and show them in a
histogram.

logProbabilities = logp(mdl,documents);
figure
histogram(logProbabilities)
xlabel("Log Probabilty")
ylabel("Frequency")
title("Document Log-Probabilities")

1 Functions — Alphabetical List

1-118

Identify the three documents with the lowest log-probability.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans =

 146
 19
 65

documents(idx(1:3))

 logp

1-119

ans =
 3×1 tokenizedDocument:

(1,1) 76 tokens: poor soul centre sinful earth sinful earth rebel powers array why dost thou pine suffer dearth painting thy outward walls costly gay why large cost short lease dost thou upon thy fading mansion spend shall worms inheritors excess eat up thy charge thy bodys end soul live thou upon thy servants loss let pine aggravate thy store buy terms divine selling hours dross fed rich shall thou feed death feeds men death once dead theres dying
(2,1) 76 tokens: devouring time blunt thou lions paws make earth devour own sweet brood pluck keen teeth fierce tigers jaws burn longlivd phoenix blood make glad sorry seasons thou fleets whateer thou wilt swiftfooted time wide world fading sweets forbid thee heinous crime o carve thy hours loves fair brow nor draw lines thine antique pen thy course untainted allow beautys pattern succeeding men yet thy worst old time despite thy wrong love shall verse ever live young
(3,1) 73 tokens: brass nor stone nor earth nor boundless sea sad mortality oersways power rage shall beauty hold plea whose action stronger flower o shall summers honey breath hold against wrackful siege battering days rocks impregnable stout nor gates steel strong time decays o fearful meditation alack shall times best jewel times chest lie hid strong hand hold swift foot back spoil beauty forbid o none unless miracle might black ink love still shine bright

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Calculate Document Log-Probabilities from Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.
load sonnetsCounts.mat
size(counts)

ans =

 154 3092

Fit an LDA model with 20 topics.
numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.107692 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.18	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

1 Functions — Alphabetical List

1-120

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Compute the document log-probabilities of the training documents. Specify to draw 500
samples for each document.

numSamples = 500;
logProbabilities = logp(mdl,counts, ...
 'NumSamples',numSamples);

Show the document log-probabilities in a histogram.

figure
histogram(logProbabilities)
xlabel("Log Probabilty")
ylabel("Frequency")
title("Document Log-Probabilities")

 logp

1-121

Identify the indices of the three documents with the lowest log-probability.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans =

 146
 19
 65

1 Functions — Alphabetical List

1-122

Compare Goodness of Fit

Compare the goodness of fit for two LDA models by calculating the perplexity of a held-
out test set of documents.

Load the sonnetsDocuments data. sonnetsDocuments returns a
tokenizedDocument array of preprocessed versions of Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data.

documents = sonnetsDocuments;

Set aside 10% of the documents at random.

numDocuments = numel(documents);
cvp = cvpartition(numDocuments,'HoldOut',0.1);
documentsTrain = documents(cvp.training);
documentsTest = documents(cvp.test);

Create a bag-of-words model from the training documents.

bag = bagOfWords(documentsTrain)

bag =
bagOfWords with 2909 words and 139 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LDA model with 20 topics to the bag-of-words model.

numTopics = 20;
mdl1 = fitlda(bag,numTopics);

Initial topic assignments sampled in 0.0181961 seconds.
===

 logp

1-123

| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.00	Inf	1.137e+03	5.000	0
1	0.02	5.5571e-02	7.850e+02	5.000	0
2	0.02	5.2541e-03	7.582e+02	5.000	0
3	0.02	3.9933e-03	7.384e+02	5.000	0
4	0.02	7.2248e-04	7.349e+02	5.000	0
5	0.02	3.8814e-03	7.164e+02	5.000	0
6	0.02	2.1087e-03	7.065e+02	5.000	0
7	0.02	2.0816e-03	6.970e+02	5.000	0
8	0.02	1.9510e-03	6.882e+02	5.000	0
9	0.02	1.4162e-03	6.818e+02	5.000	0
10	0.02	1.4113e-03	6.756e+02	5.000	0
11	0.03	1.0378e-03	6.710e+02	13.255	23
12	0.03	1.1699e-02	7.248e+02	16.536	20
13	0.03	2.5441e-03	7.371e+02	17.269	13
14	0.03	9.7803e-04	7.418e+02	18.155	14
15	0.03	9.8659e-04	7.467e+02	18.650	11
16	0.03	1.9437e-03	7.564e+02	19.555	14
17	0.03	1.0115e-03	7.513e+02	18.746	13
18	0.03	1.3317e-03	7.580e+02	19.781	15
19	0.02	3.1099e-04	7.596e+02	19.851	5
20	0.03	8.9869e-04	7.550e+02	19.181	12
===					
Iteration	Time per	Relative	Training	Topic	Concentr.
	iter., s	Delta log(L)	perplexity	concentr.	iterations
===					
21	0.02	5.1822e-04	7.525e+02	19.364	7
22	0.02	4.5942e-04	7.502e+02	19.278	5
23	0.02	1.0923e-04	7.496e+02	19.250	4
24	0.02	4.2040e-04	7.476e+02	19.079	6
25	0.02	8.8342e-04	7.432e+02	18.516	11
26	0.02	9.9164e-05	7.427e+02	18.606	5
===

Compute the perplexity of the held-out test set.

[~,ppl1] = logp(mdl1,documentsTest)

ppl1 = 781.5692

Fit an LDA model with 40 topics to the bag-of-words model.

1 Functions — Alphabetical List

1-124

numTopics = 40;
mdl2 = fitlda(bag,numTopics);
Initial topic assignments sampled in 0.0185363 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.00	Inf	1.068e+03	10.000	0
1	0.05	8.7406e-02	6.095e+02	10.000	0
2	0.04	7.1007e-03	5.826e+02	10.000	0
3	0.04	4.1709e-03	5.674e+02	10.000	0
4	0.04	4.7632e-03	5.506e+02	10.000	0
5	0.04	2.5930e-03	5.417e+02	10.000	0
6	0.04	2.8340e-03	5.321e+02	10.000	0
7	0.04	4.4464e-04	5.336e+02	10.000	0
8	0.04	1.3042e-03	5.293e+02	10.000	0
9	0.04	3.2357e-03	5.187e+02	10.000	0
10	0.04	2.4565e-04	5.179e+02	10.000	0
11	0.05	2.9851e-03	5.083e+02	16.621	17
12	0.05	8.3119e-03	5.356e+02	18.276	13
13	0.05	4.3005e-03	5.503e+02	19.955	13
14	0.04	1.2658e-03	5.547e+02	20.172	6
15	0.05	1.1721e-03	5.589e+02	20.424	7
16	0.05	9.2352e-04	5.621e+02	20.961	9
17	0.05	1.9529e-03	5.691e+02	21.906	11
18	0.05	9.4417e-04	5.726e+02	22.304	8
19	0.04	3.6839e-04	5.739e+02	22.569	7
20	0.04	3.7166e-04	5.725e+02	22.342	6
===					
Iteration	Time per	Relative	Training	Topic	Concentr.
	iter., s	Delta log(L)	perplexity	concentr.	iterations
===					
21	0.04	5.8456e-04	5.704e+02	22.095	6
22	0.05	8.8278e-04	5.672e+02	21.742	7
23	0.05	4.1349e-04	5.687e+02	22.145	8
24	0.05	2.4727e-03	5.599e+02	21.493	9
25	0.04	6.1150e-04	5.577e+02	21.321	5
26	0.05	4.3317e-04	5.593e+02	21.625	7
27	0.05	3.9528e-04	5.607e+02	21.798	6
28	0.05	5.4531e-04	5.626e+02	21.823	4
29	0.05	2.5229e-04	5.635e+02	21.842	4
30	0.04	9.1549e-04	5.668e+02	21.834	4
31	0.05	1.9169e-03	5.600e+02	21.630	5
32	0.04	1.8207e-04	5.593e+02	21.565	4

 logp

1-125

33	0.04	9.4024e-04	5.627e+02	21.601	4
34	0.04	6.0374e-04	5.605e+02	21.538	4
35	0.05	5.7683e-04	5.626e+02	21.898	8
36	0.05	1.0780e-03	5.587e+02	21.485	8
37	0.05	3.6849e-05	5.589e+02	21.460	4
===

Compute the perplexity of the held-out test set.

[~,ppl2] = logp(mdl2,documentsTest)

ppl2 = 808.6732

The perplexity is lower for the first model which suggests that this model may be better
fit to the held-out test data.

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Input Arguments
ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row of the words of a single document.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word appears in the jth document.

1 Functions — Alphabetical List

1-126

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumSamples',500 specifies to draw 500 samples for each document

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns

corresponding to documents.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

This option only applies if you specify the input documents as a matrix of word counts.
Data Types: char

NumSamples — Number of samples to draw
1000 (default) | positive integer

Number of samples to draw for each document, specified as the comma-separated pair
consisting of 'NumSamples' and a positive integer.
Example: 'NumSamples',500

Output Arguments
logProb — Log-probabilities
numeric vector

 logp

1-127

Log-probabilities of the documents under the LDA model, returned as a numeric vector.

ppl — Perplexity
positive scalar

Perplexity of the documents calculated from the log-probabilities, returned as a positive
scalar.

See Also
bagOfWords | fitlda | ldaModel | predict | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

1 Functions — Alphabetical List

1-128

lower
Convert documents to lowercase

Syntax
newDocuments = lower(documents)

Description
newDocuments = lower(documents) converts each uppercase character in the input
documents to the corresponding lowercase character, and leaves all other characters
unchanged.

Examples

Convert Documents to Lowercase

Convert all uppercase characters in an array of documents to lowercase.

documents = tokenizedDocument([
 "An Example of a Short Sentence"
 "A Second Short Sentence"])

documents =
 2x1 tokenizedDocument:

(1,1) 6 tokens: An Example of a Short Sentence
(2,1) 4 tokens: A Second Short Sentence

newDocuments = lower(documents)

newDocuments =
 2x1 tokenizedDocument:

 lower

1-129

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
bagOfWords | docfun | normalizeWords | regexprep | replace |
tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-130

normalizeWords
Remove inflections from words using the Porter stemmer

normalizeWords uses the Porter stemmer to group different forms of English words by
reducing them to a common stem. This common stem is not necessarily a proper English
word.

Syntax
newDocuments = normalizeWords(documents)
newWords = normalizeWords(words)

Description
newDocuments = normalizeWords(documents) stems each word in documents
using the Porter stemmer.

newWords = normalizeWords(words) stems each word in words.

Examples

Stem Words in Document Array

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
 "a strongly worded collection of words"
 "another collection of words"])

documents =
 2×1 tokenizedDocument:

(1,1) 6 tokens: a strongly worded collection of words
(2,1) 4 tokens: another collection of words

 normalizeWords

1-131

newDocuments = normalizeWords(documents)

newDocuments =
 2×1 tokenizedDocument:

(1,1) 6 tokens: a strongli word collect of word
(2,1) 4 tokens: anoth collect of word

Stem Words in String Array

Stem the words in a string array using the Porter stemmer.

words = split("a strongly worded collection of words")

words = 6×1 string array
 "a"
 "strongly"
 "worded"
 "collection"
 "of"
 "words"

newWords = normalizeWords(words)

newWords = 6×1 string array
 "a"
 "strongli"
 "word"
 "collect"
 "of"
 "word"

Input Arguments
documents — Input documents
tokenizedDocument array

1 Functions — Alphabetical List

1-132

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newWords — Output words
string array | character vector | cell array of character vectors

Output words, returned as a string array, character vector, or cell array of character
vectors. words and newWords have the same data type.

See Also
bagOfWords | lower | regexprep | replace | tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 normalizeWords

1-133

plus+
Append documents

Syntax
newDocuments = documents1 + documents2
newDocuments = plus(documents1,documents2)

Description
newDocuments = documents1 + documents2 appends the documents in
documents2 to the documents in documents1.

newDocuments = plus(documents1,documents2) is equivalent to newDocuments =
documents1 + documents2.

Examples

Append Documents

Load the sonnetsDocuments data. sonnetsDocuments returns a
tokenizedDocument array of preprocessed versions of Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;

Create arrays containing the first 5 and second 5 sonnets.

documents1 = documents(1:5)

1 Functions — Alphabetical List

1-134

documents1 =
 5x1 tokenizedDocument:

(1,1) 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
(2,1) 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
(3,1) 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
(4,1) 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
(5,1) 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet

documents2 = documents(6:10)

documents2 =
 5x1 tokenizedDocument:

(1,1) 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
(2,1) 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
(3,1) 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
(4,1) 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
(5,1) 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Append the second 5 sonnets to the first 5 sonnets.

newDocuments = documents1 + documents2

newDocuments =
 5x1 tokenizedDocument:

(1,1) 138 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
(2,1) 135 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
(3,1) 135 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
(4,1) 141 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
(5,1) 130 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

 plus+

1-135

Input Arguments
documents1 — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documents1 and
documents2 must be the same size.

documents2 — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documents1 and
documents2 must be the same size.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
tokenizedDocument

Introduced in R2017b

1 Functions — Alphabetical List

1-136

predict
Predict top LDA topics of documents

Syntax
topicIdx = predict(ldaMdl,documents)
topicIdx = predict(ldaMdl,counts)
[topicIdx,score] = predict(___)
___ = predict(___ ,Name,Value)

Description
topicIdx = predict(ldaMdl,documents) returns the LDA topic indices with the
largest probabilities for documents based on the LDA model ldaMdl.

topicIdx = predict(ldaMdl,counts) returns the LDA topic indices with the largest
probabilities for the documents represented by a matrix of word counts.

[topicIdx,score] = predict(___) also returns a matrix of posterior probabilities
score.

___ = predict(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Predict Top LDA Topics of Documents

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

 predict

1-137

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0365048 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.02	Inf	1.159e+03	5.000	0
1	0.04	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5

1 Functions — Alphabetical List

1-138

 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."
 "if music be the food of love, play on."]);
topicIdx = predict(mdl,newDocuments)

topicIdx =

 19
 8

Visualize the predicted topics using word clouds.

figure
subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
title("Topic " + topicIdx(1))
subplot(1,2,2)
wordcloud(mdl,topicIdx(2));
title("Topic " + topicIdx(2))

 predict

1-139

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Predict Top LDA Topics of Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

1 Functions — Alphabetical List

1-140

ans =

 154 3092

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to
'default'.

rng('default')
numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.0200075 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.01	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.02	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.02	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Predict the top topics for the first 5 documents in counts.

topicIdx = predict(mdl,counts(1:5,:))

topicIdx =

 predict

1-141

 3
 15
 19
 3
 14

Calculate Topic Prediction Scores

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0291698 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |

1 Functions — Alphabetical List

1-142

===
0	0.01	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Predict the top topics for a new document. Specify the iteration limit to be 200.

newDocument = tokenizedDocument("what's in a name? a rose by any other name would smell as sweet.");
iterationLimit = 200;
[topicIdx,scores] = predict(mdl,newDocument, ...
 'IterationLimit',iterationLimit)

topicIdx = 19

scores =

 0.0250 0.0250 0.0250 0.0250 0.1250 0.0250 0.0250 0.0250 0.0250 0.0730 0.0250 0.0250 0.0770 0.0250 0.0250 0.0250 0.0250 0.0250 0.2250 0.1250

View the prediction scores in a bar chart.

figure
bar(scores)
title("LDA Topic Prediction Scores")
xlabel("Topic Index")
ylabel("Score")

 predict

1-143

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Input Arguments
ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

1 Functions — Alphabetical List

1-144

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word appears in the jth document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IterationLimit',200 specifies the iteration limit to be 200.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns

corresponding to documents.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

This option only applies if you specify the input documents as a matrix of word counts.
Data Types: char

 predict

1-145

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

Output Arguments
topicIdx — Predicted topic indices
vector of numeric indices

Predicted topic indices, returned as a vector of numeric indices.

score — Predicted topic probabilities
matrix

Predicted topic probabilities, returned as a D-by-K matrix, where D is the number of input
documents and K is the number of topics in the LDA model. score(i,j) is the
probability that topic j appears in document i. Each row of score sums to one.

See Also
bagOfWords | fitlda | ldaModel | logp | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

1 Functions — Alphabetical List

1-146

Introduced in R2017b

 predict

1-147

extractFileText
Read text from PDF, Microsoft Word, and plain text files

Syntax
str = extractFileText(filename)
___ = extractFileText(___ ,Name,Value)

Description
str = extractFileText(filename) reads the text data from a file as a string.

___ = extractFileText(___ ,Name,Value) specifies additional options using one
or more name-value pair arguments.

Examples

Extract Text Data from Text File

Extract the text from sonnets.txt using extractFileText. The file sonnets.txt
contains Shakespeare's sonnets in plain text.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I");
ii = strfind(str,"II");
start = i(1);
fin = ii(1);
extractBetween(str,start,fin-1)

ans =
 "I

1 Functions — Alphabetical List

1-148

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,
 But as the riper should by time decease,
 His tender heir might bear his memory:
 But thou, contracted to thine own bright eyes,
 Feed'st thy light's flame with self-substantial fuel,
 Making a famine where abundance lies,
 Thy self thy foe, to thy sweet self too cruel:
 Thou that art now the world's fresh ornament,
 And only herald to the gaudy spring,
 Within thine own bud buriest thy content,
 And tender churl mak'st waste in niggarding:
 Pity the world, or else this glutton be,
 To eat the world's due, by the grave and thee.

 "

Extract Text Data from PDF

Extract the text from exampleSonnets.pdf using extractFileText. The file
exampleSonnets.pdf contains Shakespeare's sonnets in a PDF file.

str = extractFileText("exampleSonnets.pdf");

View the second sonnet.

ii = strfind(str,"II");
iii = strfind(str,"III");
start = ii(1);
fin = iii(1);
extractBetween(str,start,fin-1)

ans =
 "II

 When forty winters shall besiege thy brow,
 And dig deep trenches in thy beauty's field,
 Thy youth's proud livery so gazed on now,
 Will be a tatter'd weed of small worth held:
 Then being asked, where all thy beauty lies,
 Where all the treasure of thy lusty days;

 extractFileText

1-149

 To say, within thine own deep sunken eyes,
 Were an all-eating shame, and thriftless praise.
 How much more praise deserv'd thy beauty's use,
 If thou couldst answer 'This fair child of mine
 Shall sum my count, and make my old excuse,'
 Proving his beauty by succession thine!
 This were to be new made when thou art old,
 And see thy blood warm when thou feel'st it cold.

 "

Extract the text from pages 3, 5 and 7 of the PDF file.

pages = [3 5 7];
str = extractFileText("exampleSonnets.pdf", ...
 'Pages',pages);

View the 10th sonnet.

x = strfind(str,"X");
xi = strfind(str,"XI");
start = x(1);
fin = xi(1);
extractBetween(str,start,fin-1)

ans =
 "X

 Is it for fear to wet a widow's eye,
 That thou consum'st thy self in single life?
 Ah! if thou issueless shalt hap to die,
 The world will wail thee like a makeless wife;
 The world will be thy widow and still weep
 That thou no form of thee hast left behind,
 When every private widow well may keep
 By children's eyes, her husband's shape in mind:
 Look! what an unthrift in the world doth spend
 Shifts but his place, for still the world enjoys it;
 But beauty's waste hath in the world an end,
 And kept unused the user so destroys it.
 No love toward others in that bosom sits
 That on himself such murd'rous shame commits.

 X

1 Functions — Alphabetical List

1-150

 For shame! deny that thou bear'st love to any,
 Who for thy self art so unprovident.
 Grant, if thou wilt, thou art belov'd of many,
 But that thou none lov'st is most evident:
 For thou art so possess'd with murderous hate,
 That 'gainst thy self thou stick'st not to conspire,
 Seeking that beauteous roof to ruinate
 Which to repair should be thy chief desire.

 "

Import Text Data Using a File Datastore

Import three example sonnet text files using a file datastore.

Create a file datastore for the example sonnet text files. The example sonnets have
filenames "exampleSonnet1.txt", "exampleSonnet2.txt", and
"exampleSonnet3.txt". Specify the read function to be extractFileText.

fds = fileDatastore('exampleSonnet*.txt','ReadFcn',@extractFileText)

fds =
 FileDatastore with properties:

 Files: {
 ' ...\ib3A4F7C\26\tp410e6e2b\textanalytics-ex73762432\exampleSonnet1.txt';
 ' ...\ib3A4F7C\26\tp410e6e2b\textanalytics-ex73762432\exampleSonnet2.txt';
 ' ...\ib3A4F7C\26\tp410e6e2b\textanalytics-ex73762432\exampleSonnet3.txt'
 }
 UniformRead: 0
 ReadFcn: @extractFileText

Create an empty bag-of-words model.

bag = bagOfWords

bag =
Empty bagOfWords

 extractFileText

1-151

Loop over the files in the datastore and read each file. Tokenize the text and add the
document to bag.

while hasdata(fds)
 str = read(fds);
 document = tokenizedDocument(str);
 bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag

bag =
bagOfWords with 224 words and 3 documents:

 From fairest creatures we desire …
 1 1 1 1 1
 0 0 0 0 0
 …

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Pages',[1 3 5] specifies to read pages 1, 3, and 5 from a PDF file.

Encoding — Character encoding
'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

1 Functions — Alphabetical List

1-152

Character encoding to use, specified as a character vector or a string scalar. The
character vector or string scalar must contain a standard character encoding scheme
name such as the following.
'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'
'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

If you do not specify an encoding scheme, then the function performs heuristic auto-
detection for the encoding to use. If these heuristics fail, then you must use specify one
explicitly.

This option only applies when the input is a plain text file.
Data Types: char | string

Password — Password to open PDF file
character vector | string scalar

Password to open PDF file, specified as a character vector or a string scalar. Only has an
effect if the input file is a PDF.
Example: 'Password','skroWhtaM'
Data Types: char | string

 extractFileText

1-153

Pages — Pages to read from PDF file
vector of positive integers

Pages to read from PDF file, specified as a vector of positive integers. Only has an effect
if the input file is a PDF. The function, by default, reads all pages from PDF.
Example: 'Pages',[1 3 5]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
tokenizedDocument | writeTextDocument

Topics
“Extract Text Data From Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-154

readWordEmbedding
Read word embedding from text file

Syntax
emb = readWordEmbedding(filename)

Description
emb = readWordEmbedding(filename) reads the pretrained word embedding stored
in text file with name filename. The file encoding must be UTF-8 in either word2vec or
GloVe text embedding format.

Examples

Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

king = word2vec(emb,"king");
man = word2vec(emb,"man");

 readWordEmbedding

1-155

woman = word2vec(emb,"woman");
word = vec2word(emb,king - man + woman)

word =
"queen"

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

Output Arguments
emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

See Also
ismember | trainWordEmbedding | vec2word | word2vec | wordEmbedding |
writeWordEmbedding

Topics
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

1 Functions — Alphabetical List

1-156

regexprep
Replace text in words of documents using regular expression

Syntax
newDocuments = regexprep(documents,expression,replace)

Description
newDocuments = regexprep(documents,expression,replace) replaces all
occurrences of the regular expression expression in the words of documents with the
text in replace.

The function matches each word independently. The match does not have to span the
whole word.

Examples

Update Text in Words

Replace words that begin with "s", end "e", and have at least one character between
them. To match whole words, use "^" to match the start of a word and "$" to match the
end of the word.

documents = tokenizedDocument([...
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

 regexprep

1-157

expression = "^s(\w+)e$";
replace = "thing";
newDocuments = regexprep(documents,expression,replace)

newDocuments =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short thing
(2,1) 4 tokens: a second short thing

If you do not use "^" and "$", then you can match substrings of the words. Replace all
vowels with "_".

expression = "[aeiou]";
replace = "_";
newDocuments = regexprep(documents,expression,replace)

newDocuments =
 2x1 tokenizedDocument:

(1,1) 6 tokens: _n _x_mpl_ _f _ sh_rt s_nt_nc_
(2,1) 4 tokens: _ s_c_nd sh_rt s_nt_nc_

Include Captured Tokens in Word Replacement

Replace variations of the word "walk" by capturing the letters that follow "walk".

documents = tokenizedDocument([
 "I walk"
 "they walked"
 "we are walking"])

documents =
 3x1 tokenizedDocument:

(1,1) 2 tokens: I walk
(2,1) 2 tokens: they walked
(3,1) 3 tokens: we are walking

1 Functions — Alphabetical List

1-158

expression = "walk(\w*)";
replace = "ascend$1";
newDocuments = regexprep(documents,expression,replace)

newDocuments =
 3x1 tokenizedDocument:

(1,1) 2 tokens: I ascend
(2,1) 2 tokens: they ascended
(3,1) 3 tokens: we are ascending

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

expression — Regular expression
character vector | cell array of character vectors | string array

Regular expression, specified as a character vector, a cell array of character vectors, or a
string array. Each expression can contain characters, metacharacters, operators, tokens,
and flags that specify patterns to match in str.

The following tables describe the elements of regular expressions.

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to
construct a generalized pattern of characters.

Metacharacter Description Example
. Any single character, including

white space
'..ain' matches sequences of five
consecutive characters that end with
'ain'.

 regexprep

1-159

Metacharacter Description Example
[c1c2c3] Any character contained within the

square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[rp.]ain' matches 'rain' or 'pain'
or '.ain'.

[^c1c2c3] Any character not contained within
the square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain' and '*ain'. For
example, it matches 'gain', 'lain', or
'vain'.

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character in
the range of A through G.

\w Any alphabetic, numeric, or
underscore character. For English
character sets, \w is equivalent to
[a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not alphabetic,
numeric, or underscore. For English
character sets, \W is equivalent to
[^a-zA-Z_0-9]

'\W*' identifies a term that is not a
word.

\s Any white-space character;
equivalent to [\f\n\r\t\v]

'\w*n\s' matches words that end with
the letter n, followed by a white-space
character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit followed
by any non-white-space character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of
consecutive digits.

\D Any nondigit character; equivalent
to [^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

\oN or \o{N} Character of octal value N '\o{40}' matches the space character,
defined by octal 40.

\xN or \x{N} Character of hexadecimal value N '\x2C' matches the comma character,
defined by hex 2C.

1 Functions — Alphabetical List

1-160

Character Representation
Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.
Quantifier Matches the expression when it occurs... Example
expr* 0 or more times consecutively. '\w*' matches a word of any length.
expr? 0 times or 1 time. '\w*(\.m)?' matches words that

optionally end with the extension .m.
expr+ 1 or more times consecutively. '' matches an

 HTML tag when the file name
contains one or more characters.

expr{m,n} At least m times, but no more than n
times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to * and
+, respectively.

'' matches
an <a> HTML tag when the file name
contains one or more characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive digits.

 regexprep

1-161

Quantifiers can appear in three modes, described in the following table. q represents any
of the quantifiers in the previous table.

Mode Description Example
exprq Greedy expression: match as many

characters as possible.
Given the text
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'
exprq? Lazy expression: match as few

characters as necessary.
Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*?>' ends each
match at the first occurrence of the
closing angle bracket (>):

'<tr>' '<td>' '</td>'
exprq+ Possessive expression: match as much as

possible, but do not rescan any portions
of the text.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*+>' does not
return any matches, because the closing
angle bracket is captured using .*, and
is not rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to multiple elements,
or disable backtracking in a specific group.

Grouping
Operator

Description Example

(expr) Group elements of the expression and
capture tokens.

'Joh?n\s(\w*)' captures a token that
contains the last name of any person
with the first name John or Jon.

1 Functions — Alphabetical List

1-162

Grouping
Operator

Description Example

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}' matches
two consecutive patterns of a vowel
followed by a nonvowel, such as 'anon'.

Without grouping, '[aeiou][^aeiou]
{2}'matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack
within the group to complete the match,
and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using the
atomic group, Z is captured using .* and
is not rescanned.

(expr1|
expr2)

Match expression expr1 or expression
expr2.

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress tokens
or group atomically.

'(let|tel)\w+' matches words that
start with let or tel.

Anchors

Anchors in the expression match the beginning or end of the input text or word.
Anchor Matches the... Example
^expr Beginning of the input text. '^M\w*' matches a word starting with

M at the beginning of the text.
expr$ End of the input text. '\w*m$' matches words ending with m

at the end of the text.
\<expr Beginning of a word. '\<n\w*' matches any words starting

with n.
expr\> End of a word. '\w*e\>' matches any words ending

with e.

Lookaround Assertions

 regexprep

1-163

Lookaround assertions look for patterns that immediately precede or follow the intended
match, but are not part of the match.

The pointer remains at the current location, and characters that correspond to the test
expression are not captured or discarded. Therefore, lookahead assertions can match
overlapping character groups.

Lookaround
Assertion

Description Example

expr(?=test) Look ahead for characters that match
test.

'\w*(?=ing)' matches terms that are
followed by ing, such as 'Fly' and
'fall' in the input text 'Flying,
not falling.'

expr(?!test) Look ahead for characters that do not
match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

(?<=test)expr Look behind for characters that match
test.

'(?<=re)\w*' matches terms that
follow 're', such as 'new', 'use', and
'cycle' in the input text 'renew,
reuse, recycle'

(?<!test)expr Look behind for characters that do not
match test.

'(?<!\d)(\d)(?!\d)' matches
single-digit numbers (digits that do not
precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a
logical AND.

Operation Description Example
(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches

consonants.
(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches

consonants.

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and
then use the outcome to determine which pattern, if any, to match next. These operators
support logical OR, and if or if/else conditions.

1 Functions — Alphabetical List

1-164

Conditions can be tokens, lookaround operators, or dynamic expressions of the form (?
@cmd). Dynamic expressions must return a logical or numeric value.

Conditional Operator Description Example
expr1|expr2 Match expression expr1 or

expression expr2.

If there is a match with expr1,
then expr2 is ignored.

'(let|tel)\w+' matches words
that start with let or tel.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)'
matches a drive name, such as C:\,
when run on a Windows® system.

(?(cond)expr1|expr2) If condition cond is true, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular
expression in parentheses. You can refer to a token by its sequence in the text (an ordinal
token), or assign names to tokens for easier code maintenance and readable output.

Ordinal Token Operator Description Example
(expr) Capture in a token the characters

that match the enclosed
expression.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John or
Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures
tokens for HTML tags, such as
'title' from the text
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

 regexprep

1-165

Named Token Operator Description Example
(?<name>expr) Capture in a named token the

characters that match the
enclosed expression.

'(?<month>\d+)-(?<day>\d+)-
(?<yr>\d+)' creates named
tokens for the month, day, and year
in an input date of the form mm-
dd-yy.

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</
\k<tag>>' captures tokens for
HTML tags, such as 'title' from
the text '<title>Some text</
title>'.

(?(name)expr1|expr2) If the named token is found, then
match expr1. Otherwise, match
expr2.

'Mr(?<sex>s?)\..*?(?
(sex)her|his) \w*' matches
text that includes her when the
text begins with Mrs, or that
includes his when the text begins
with Mr.

Note If an expression has nested parentheses, MATLAB captures tokens that correspond
to the outermost set of parentheses. For example, given the search pattern '(and(y|
rew))', MATLAB creates a token for 'andrew' but not for 'y' or 'rew'.

Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression
to determine the text to match.

The parentheses that enclose dynamic expressions do not create a capturing group.

1 Functions — Alphabetical List

1-166

Operator Description Example
(??expr) Parse expr and include the resulting

term in the match expression.

When parsed, expr must correspond
to a complete, valid regular
expression. Dynamic expressions that
use the backslash escape character (\)
require two backslashes: one for the
initial parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'
determines how many characters to
match by reading a digit at the
beginning of the match. The dynamic
expression is enclosed in a second set
of parentheses so that the resulting
match is captured in a token. For
instance, matching '5XXXXX'
captures tokens for '5' and
'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include the
output returned by the command in
the match expression.

'(.{2,}).?(??@fliplr($1))'
finds palindromes that are at least
four characters long, such as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard any
output the command returns. (Helpful
for diagnosing regular expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include double
letters (such as pp), and displays
intermediate results.

Within dynamic expressions, use the following operators to define replacement text.
Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to

represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

Comments
Characters Description Example
(?#comment) Insert a comment in the regular

expression. The comment text is
ignored when matching the input.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

 regexprep

1-167

Search Flags

Search flags modify the behavior for matching expressions. An alternative to using a
search flag within an expression is to pass an option input argument.

Flag Description
(?-i) Match letter case (default for regexp and regexprep).
(?i) Do not match letter case (default for regexpi).
(?s) Match dot (.) in the pattern with any character (default).
(?-s) Match dot in the pattern with any character that is not a newline

character.
(?-m) Match the ^ and $ metacharacters at the beginning and end of text

(default).
(?m) Match the ^ and $ metacharacters at the beginning and end of a line.
(?-x) Include space characters and comments when matching (default).
(?x) Ignore space characters and comments when matching. Use '\ ' and

'\#' to match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as
(?i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.
Data Types: char | cell | string

replace — Replacement text
character vector | cell array of character vectors | string array

Replacement text, specified as a character vector, a cell array of character vectors, or a
string array, as follows:

• If replace is a single character vector and expression is a cell array of character
vectors, then regexprep uses the same replacement text for each expression.

• If replace is a cell array of N character vectors and expression is a single character
vector, then regexprep attempts N matches and replacements.

1 Functions — Alphabetical List

1-168

• If both replace and expression are cell arrays of character vectors, then they must
contain the same number of elements. regexprep pairs each replace element with
its corresponding element in expression.

The replacement text can include regular characters, special characters (such as tabs or
new lines), or replacement operators, as shown in the following tables.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to

represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd
Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Data Types: char | cell | string

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

 regexprep

1-169

See Also
bagOfWords | docfun | lower | normalizeWords | replace | tokenizedDocument
| upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-170

removeDocument
Remove documents from bag-of-words model

Syntax
newBag = removeDocument(bag,idx)

Description
newBag = removeDocument(bag,idx) removes the documents with indices specified
by idx from the bag-of-words model bag. If the removed documents contain words that
do not appear in the remaining documents, then the function also removes these words
from the vocabulary.

Examples

Remove Documents from Bag-of-Words Model

Remove selected documents from a bag-of-words model.

documents = tokenizedDocument([...
 "an example of a short sentence"
 "a second short sentence"
 "a third example"
 "a final sentence"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 9 words and 4 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1
 …

 removeDocument

1-171

Remove the first and third documents from bag.

idx = [1 3];
newBag = removeDocument(bag,idx)

newBag =
bagOfWords with 5 words and 2 documents:

 a short sentence second final
 1 1 1 1 0
 1 0 1 0 1

Remove the same documents using logical indices.

idx = logical([1 0 1 0]);
newBag = removeDocument(bag,idx)

newBag =
bagOfWords with 5 words and 2 documents:

 a short sentence second final
 1 1 1 1 0
 1 0 1 0 1

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

idx — Indices of documents to remove
vector of numeric indices | vector of logical indices

Indices of documents to remove, specified as a vector of numeric indices or a vector of
logical indices.
Example: [2 4 6]
Example: [0 1 0 1 0 1]

1 Functions — Alphabetical List

1-172

Output Arguments
newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
addDocument | bagOfWords | removeEmptyDocuments | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 removeDocument

1-173

removeEmptyDocuments
Remove empty documents from tokenized document array or bag-of-words model

Syntax
newDocuments = removeEmptyDocuments(documents)
newBag = removeEmptyDocuments(bag)
[___ ,idx] = removeEmptyDocuments(___)

Description
newDocuments = removeEmptyDocuments(documents) removes documents which
have no words from documents.

newBag = removeEmptyDocuments(bag) removes documents which have no words
from the bag-of-words model bag.

[___ ,idx] = removeEmptyDocuments(___) also returns the indices of the removed
documents.

Examples

Remove Empty Documents from Array

Remove documents containing no words from an array of tokenized documents.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 ""
 "a second short sentence"
 ""])

1 Functions — Alphabetical List

1-174

documents =
 4×1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 0 tokens:
(3,1) 4 tokens: a second short sentence
(4,1) 0 tokens:

Remove the empty documents.

newDocuments = removeEmptyDocuments(documents)

newDocuments =
 2×1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Remove Empty Documents from Bag-of-Words Model

Remove documents containing no words from bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 ""
 "a second short sentence"
 ""]);
bag = bagOfWords(documents)

bag =
bagOfWords with 7 words and 4 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 0 0
 …

Remove the empty documents from the bag-of-words model.

 removeEmptyDocuments

1-175

newBag = removeEmptyDocuments(bag)

newBag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

Remove Documents and Corresponding Labels

Remove documents containing no words from an array and use the indices of removed
documents to remove the corresponding labels also.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 ""
 "a second short sentence"
 ""])

documents =
 4x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 0 tokens:
(3,1) 4 tokens: a second short sentence
(4,1) 0 tokens:

Create a vector of labels.

labels = ["T"; "F"; "F"; "T"]

labels = 4x1 string array
 "T"
 "F"
 "F"
 "T"

Remove the empty documents and get the indices of the removed documents.

1 Functions — Alphabetical List

1-176

[newDocuments, idx] = removeEmptyDocuments(documents)

newDocuments =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

idx =

 2
 4

Remove the corresponding labels from labels.

labels(idx) = []

labels = 2x1 string array
 "T"
 "F"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

 removeEmptyDocuments

1-177

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

idx — Indices of removed documents
vector of positive integers

Indices of removed documents, returned as a vector of positive integers.

See Also
addDocument | bagOfWords | removeDocument | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-178

removeInfrequentWords
Remove words with low counts from bag-of-words model

Syntax
newBag = removeInfrequentWords(bag,count)

Description
newBag = removeInfrequentWords(bag,count) removes the words that appear at
most count times in total from the bag-of-words model bag.

Examples

Remove Infrequent Words

Remove the words that appear two times or fewer from a bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"
 "another example"
 "a short example"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 8 words and 4 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1
 …

 removeInfrequentWords

1-179

Remove the words that appear two times or fewer from the bag-of-words model.

count = 2;
newBag = removeInfrequentWords(bag,count)

newBag =
bagOfWords with 3 words and 4 documents:

 example a short
 1 1 1
 0 1 1
 …

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

count — Count threshold to remove words
positive integer

Count threshold to remove words, specified as a positive integer. The function removes
the words that appear count times in total or fewer.

Output Arguments
newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
bagOfWords | removeEmptyDocuments | removeLongWords | removeShortWords |
removeWords | stopWords | tokenizedDocument

1 Functions — Alphabetical List

1-180

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 removeInfrequentWords

1-181

removeLongWords
Remove long words from documents or bag-of-words model

Syntax
newDocuments = removeLongWords(documents,len)
newBag = removeLongWords(bag,len)

Description
newDocuments = removeLongWords(documents,len) removes words of length len
or greater from documents.

newBag = removeLongWords(bag,len) removes words of length len or greater from
the bagOfWords object bag.

Examples

Remove Long Words from Document

Remove the words with seven or greater characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removeLongWords(document,7)

newDocument =
 tokenizedDocument:

 An of a short

1 Functions — Alphabetical List

1-182

Remove Long Words from Bag-of-Words Model

Remove the words with seven or greater characters from a bag-of-words model.

documents = tokenizedDocument(["an example of a short sentence", "a second short sentence"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

newBag = removeLongWords(bag,7)

newBag =
bagOfWords with 5 words and 2 documents:

 an of a short second
 1 1 1 1 0
 0 0 1 1 1

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

len — Minimum length of words to remove
positive integer

Minimum length of words to remove, specified as a positive integer. The function
removes words with len or greater characters.

 removeLongWords

1-183

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
bagOfWords | removeInfrequentWords | removeShortWords | removeWords |
stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-184

removeShortWords
Remove short words from documents or bag-of-words model

Syntax
newDocuments = removeShortWords(documents,len)
newBag = removeShortWords(bag,len)

Description
newDocuments = removeShortWords(documents,len) removes words of length len
or less from documents.

newBag = removeShortWords(bag,len) removes words of length len or less from
the bagOfWords object bag.

Examples

Remove Short Words from Document

Remove the words with two or fewer characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removeShortWords(document,2)

newDocument =
 tokenizedDocument:

 example short sentence

 removeShortWords

1-185

Remove Short Words from Bag-of-Words Model

Remove the words with two or fewer characters from a bag-of-words model.

documents = tokenizedDocument(["an example of a short sentence", "a second short sentence"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

newBag = removeShortWords(bag,2)

newBag =
bagOfWords with 4 words and 2 documents:

 example short sentence second
 1 1 1 0
 0 1 1 1

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

len — Maximum length of words to remove
positive integer

Maximum length of words to remove, specified as a positive integer. The function
removes words with len or fewer characters.

1 Functions — Alphabetical List

1-186

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
bagOfWords | removeInfrequentWords | removeLongWords | removeWords |
stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 removeShortWords

1-187

removeWords
Remove selected words from document or bag-of-words model

Syntax
newDocuments = removeWords(documents,words)
newDocuments = removeWords(documents,idx)

newBag = removeWords(bag,words)
newBag = removeWords(bag,idx)

Description
newDocuments = removeWords(documents,words) removes the specified words
from documents.

newDocuments = removeWords(documents,idx) removes words by specifying the
numeric or logical indices idx of the words in documents.Vocabulary. This syntax is
the same as newDocuments =
removeWords(documents,documents.Vocabulary(idx)).

newBag = removeWords(bag,words) removes the specified words from the bag-of-
words model bag.

newBag = removeWords(bag,idx) removes words by specifying the numeric or logical
indices idx of the words in bag.Vocabulary. This syntax is the same as newBag =
removeWords(bag,bag.Vocabulary(idx)).

Examples

1 Functions — Alphabetical List

1-188

Remove Stop Words from Documents

Remove the stop words from an array of documents by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2×1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Remove the stop words using the stopWords function to input a list of stop words
directly into removeWords.

newDocuments = removeWords(documents,stopWords)

newDocuments =
 2×1 tokenizedDocument:

(1,1) 3 tokens: example short sentence
(2,1) 3 tokens: second short sentence

Remove Words from Documents by Index

Remove words from documents by inputting a vector of numeric indices to removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
 "I love MATLAB"
 "I love MathWorks"])

documents =
 2x1 tokenizedDocument:

 removeWords

1-189

(1,1) 3 tokens: I love MATLAB
(2,1) 3 tokens: I love MathWorks

View the vocabulary of documents.

documents.Vocabulary

ans = 1x4 string array
 "I" "love" "MATLAB" "MathWorks"

Remove the first and third words of the vocabulary from the documents by specifying the
numeric indices [1 3].

idx = [1 3];
newDocuments = removeWords(documents,idx)

newDocuments =
 2x1 tokenizedDocument:

(1,1) 1 tokens: love
(2,1) 2 tokens: love MathWorks

Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newDocuments = removeWords(documents,idx)

newDocuments =
 2x1 tokenizedDocument:

(1,1) 1 tokens: love
(2,1) 2 tokens: love MathWorks

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

1 Functions — Alphabetical List

1-190

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

Remove the stop words using the stopWords function to input a list of stop words
directly into removeWords.

newBag = removeWords(bag,stopWords)

newBag =
bagOfWords with 4 words and 2 documents:

 example short sentence second
 1 1 1 0
 0 1 1 1

Remove Words from Bag-of-Words Model by Index

Remove words from a bag-of-words model by inputting a vector of numeric indices to
removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
 "I love MATLAB"
 "I love MathWorks"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 4 words and 2 documents:

 I love MATLAB MathWorks
 1 1 1 0
 1 1 0 1

 removeWords

1-191

View the vocabulary of bag.

bag.Vocabulary

ans = 1x4 string array
 "I" "love" "MATLAB" "MathWorks"

Remove the first and third words of the vocabulary from the bag-of-words model by
specifying the numeric indices [1 3].

idx = [1 3];
newBag = removeWords(bag,idx)

newBag =
bagOfWords with 2 words and 2 documents:

 love MathWorks
 1 0
 1 1

Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newBag = removeWords(bag,idx)

newBag =
bagOfWords with 2 words and 2 documents:

 love MathWorks
 1 0
 1 1

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

1 Functions — Alphabetical List

1-192

Input bag-of-words model, specified as a bagOfWords object.

words — Words to remove
string vector | character vector | cell array of character vectors

Words to remove, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats it as a single
word.
Data Types: string | char | cell

idx — Indices of words in vocabulary to remove
vector of numeric indices | vector of logical indices

Indices of words to remove, specified as a vector of numeric indices or a vector of logical
indices. The indices in idx correspond to the locations of the words in the Vocabulary
property of the input documents or bag-of-words model.
Example: [1 5 10]

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
bagOfWords | removeEmptyDocuments | removeInfrequentWords |
removeLongWords | removeShortWords | stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”

 removeWords

1-193

“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-194

replace
Find and replace substrings in documents

Syntax
newDocuments = replace(documents,old,new)

Description
newDocuments = replace(documents,old,new) replaces all occurrences of old in
documents with new.

Examples

Replace Substrings in Documents

Replace words in a document array.

documents = tokenizedDocument([
 "an extreme example"
 "another extreme example"])

documents =
 2x1 tokenizedDocument:

(1,1) 3 tokens: an extreme example
(2,1) 3 tokens: another extreme example

newDocuments = replace(documents,"example","sentence")

newDocuments =
 2x1 tokenizedDocument:

(1,1) 3 tokens: an extreme sentence

 replace

1-195

(2,1) 3 tokens: another extreme sentence

Replace substrings of the words.

newDocuments = replace(documents,"ex","X-")

newDocuments =
 2x1 tokenizedDocument:

(1,1) 3 tokens: an X-treme X-ample
(2,1) 3 tokens: another X-treme X-ample

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

old — Substring to replace
string array | character vector | cell array of character vectors

Substring to replace, specified as a string array, character vector, or cell array of
character vectors.
Data Types: string | char | cell

new — New substring
string array | character vector | cell array of character vectors

New substring, specified as a string array, character vector, or cell array of character
vectors.
Data Types: string | char | cell

1 Functions — Alphabetical List

1-196

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
bagOfWords | docfun | lower | normalizeWords | replace | tokenizedDocument
| upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 replace

1-197

resume
Resume fitting LDA model

Syntax
updatedMdl = resume(ldaMdl,bag)
updatedMdl = resume(ldaMdl,counts)
updatedMdl = resume(___ ,Name,Value)

Description
updatedMdl = resume(ldaMdl,bag) returns an updated LDA model by training for
more iterations on the bag-of-words model bag. The input bag must be the same bag-of-
words model used to fit ldaMdl.

updatedMdl = resume(ldaMdl,counts) returns an updated LDA model by training
for more iterations on the documents represented by the matrix of word counts counts.
The input counts must be the same matrix used to fit ldaMdl.

updatedMdl = resume(___ ,Name,Value) specifies additional options using one or
more name-value pair arguments.

Examples

Resume Fitting of LDA Model

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

1 Functions — Alphabetical List

1-198

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LDA model with 20 topics. Set the LDA solver to be collapsed variational Bayes,
zeroth order.

numTopics = 20;
solver = 'cvb0';
mdl = fitlda(bag,numTopics, ...
 'Solver',solver)

===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.00	Inf	3.057e+03	5.000	0
1	0.02	1.4160e-01	1.130e+03	5.000	0
2	0.02	9.2528e-03	1.059e+03	5.000	0
3	0.02	1.3369e-02	9.662e+02	5.000	0
4	0.02	1.9319e-02	8.482e+02	5.000	0
5	0.02	2.4929e-02	7.199e+02	5.000	0
6	0.02	2.7516e-02	6.036e+02	5.000	0
7	0.02	2.5877e-02	5.136e+02	5.000	0
8	0.02	2.1398e-02	4.506e+02	5.000	0
9	0.02	1.6470e-02	4.082e+02	5.000	0
10	0.02	1.2497e-02	3.790e+02	5.000	0
11	0.02	9.5261e-03	3.583e+02	4.727	4
12	0.02	7.8403e-03	3.423e+02	4.378	4
13	0.02	6.2264e-03	3.302e+02	4.084	4
14	0.03	4.8817e-03	3.210e+02	3.845	4
15	0.02	3.7863e-03	3.141e+02	3.651	4

 resume

1-199

16	0.02	2.9332e-03	3.088e+02	3.492	4
17	0.02	2.3495e-03	3.047e+02	3.363	3
18	0.02	1.8551e-03	3.015e+02	3.255	3
19	0.02	1.4673e-03	2.990e+02	3.168	3
20	0.02	1.2225e-03	2.969e+02	3.096	3
===					
Iteration	Time per	Relative	Training	Topic	Concentr.
	iter., s	Delta log(L)	perplexity	concentr.	iterations
===					
21	0.02	1.0323e-03	2.952e+02	3.035	3
22	0.02	8.5489e-04	2.937e+02	2.982	3
23	0.02	7.0038e-04	2.926e+02	2.935	3
24	0.02	5.5328e-04	2.917e+02	2.894	3
25	0.02	4.4525e-04	2.909e+02	2.857	3
26	0.02	3.7084e-04	2.903e+02	2.826	3
27	0.02	3.1369e-04	2.898e+02	2.800	3
28	0.02	2.5498e-04	2.894e+02	2.777	3
29	0.02	2.0217e-04	2.890e+02	2.758	3
30	0.02	1.6488e-04	2.888e+02	2.740	3
31	0.02	1.3737e-04	2.886e+02	2.724	3
32	0.02	1.2004e-04	2.884e+02	2.709	3
33	0.02	1.0827e-04	2.882e+02	2.697	3
34	0.02	9.9321e-05	2.880e+02	2.685	2
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 2.6853
 CorpusTopicProbabilities: [0.0797 0.0452 0.0450 0.0446 0.0531 0.0466 0.0558 0.0547 0.0498 0.0508 0.0531 0.0536 0.0458 0.0436 0.0374 0.0486 0.0367 0.0453 0.0686 0.0420]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

View information about the fit.

mdl.FitInfo

ans = struct with fields:
 TerminationCode: 1
 TerminationStatus: "Relative tolerance on log-likelihood satisfied."

1 Functions — Alphabetical List

1-200

 NumIterations: 34
 NegativeLogLikelihood: 5.4207e+04
 Perplexity: 288.0198
 Solver: "cvb0"
 History: [1×1 struct]

Resume fitting the LDA model with a lower log-likelihood tolerance.

tolerance = 1e-5;
updatedMdl = resume(mdl,bag, ...
 'LogLikelihoodTolerance',tolerance)

===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
34	0.00	Inf	2.880e+02	2.685	0
35	0.02	9.0329e-05	2.879e+02	2.675	3
36	0.02	8.2414e-05	2.877e+02	2.665	2
37	0.02	7.3216e-05	2.876e+02	2.656	2
38	0.02	6.5418e-05	2.875e+02	2.648	2
39	0.02	5.8085e-05	2.874e+02	2.641	2
40	0.02	5.1839e-05	2.873e+02	2.634	2
41	0.02	4.6270e-05	2.873e+02	2.628	2
42	0.02	4.1188e-05	2.872e+02	2.622	2
43	0.02	3.6660e-05	2.871e+02	2.617	2
44	0.02	3.2955e-05	2.871e+02	2.612	2
45	0.02	3.0361e-05	2.870e+02	2.608	2
46	0.02	2.8804e-05	2.870e+02	2.604	2
47	0.02	2.7744e-05	2.869e+02	2.600	2
48	0.02	2.7177e-05	2.869e+02	2.596	2
49	0.02	2.7819e-05	2.868e+02	2.593	2
50	0.02	3.0082e-05	2.868e+02	2.589	2
51	0.02	3.4454e-05	2.867e+02	2.586	2
52	0.02	4.1612e-05	2.867e+02	2.582	2
53	0.02	5.5459e-05	2.866e+02	2.578	2
54	0.02	8.3476e-05	2.865e+02	2.574	2
===					
Iteration	Time per	Relative	Training	Topic	Concentr.
	iter., s	Delta log(L)	perplexity	concentr.	iterations
===					
55	0.02	1.2059e-04	2.863e+02	2.570	2
56	0.02	1.2359e-04	2.861e+02	2.566	2
57	0.02	7.9046e-05	2.859e+02	2.562	2

 resume

1-201

58	0.02	6.0826e-05	2.858e+02	2.558	2
59	0.02	7.7819e-05	2.857e+02	2.555	2
60	0.02	7.4205e-05	2.856e+02	2.551	2
61	0.02	5.8746e-05	2.855e+02	2.547	2
62	0.02	4.0434e-05	2.854e+02	2.542	2
63	0.02	3.2233e-05	2.854e+02	2.537	2
64	0.02	3.0283e-05	2.853e+02	2.533	2
65	0.02	2.9373e-05	2.853e+02	2.529	2
66	0.02	2.8480e-05	2.852e+02	2.525	2
67	0.02	2.7578e-05	2.852e+02	2.521	2
68	0.02	2.6618e-05	2.851e+02	2.518	2
69	0.02	2.5553e-05	2.851e+02	2.514	2
70	0.02	2.4375e-05	2.851e+02	2.511	2
71	0.02	2.3104e-05	2.850e+02	2.507	2
72	0.02	2.1771e-05	2.850e+02	2.504	2
73	0.02	2.0408e-05	2.850e+02	2.501	2
74	0.02	1.9043e-05	2.849e+02	2.498	2
===					
Iteration	Time per	Relative	Training	Topic	Concentr.
	iter., s	Delta log(L)	perplexity	concentr.	iterations
===					
75	0.02	1.7698e-05	2.849e+02	2.495	2
76	0.02	1.6391e-05	2.849e+02	2.492	2
77	0.02	1.5135e-05	2.848e+02	2.490	2
78	0.02	1.3939e-05	2.848e+02	2.487	2
79	0.02	1.2810e-05	2.848e+02	2.485	2
80	0.02	1.1752e-05	2.848e+02	2.483	2
81	0.02	1.0767e-05	2.848e+02	2.481	2
82	0.02	9.8540e-06	2.848e+02	2.479	2
===

updatedMdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 2.4793
 CorpusTopicProbabilities: [0.1060 0.0441 0.0434 0.0435 0.0520 0.0444 0.0539 0.0535 0.0478 0.0496 0.0538 0.0525 0.0431 0.0449 0.0334 0.0467 0.0382 0.0432 0.0644 0.0415]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

View information about the fit.

1 Functions — Alphabetical List

1-202

updatedMdl.FitInfo

ans = struct with fields:
 TerminationCode: 1
 TerminationStatus: "Relative tolerance on log-likelihood satisfied."
 NumIterations: 82
 NegativeLogLikelihood: 5.4097e+04
 Perplexity: 284.7508
 Solver: "cvb0"
 History: [1×1 struct]

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Resume Fitting of LDA Model to Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans =

 154 3092

Fit an LDA model with 20 topics. Set the LDA solver to be approximate variational
Bayes. For reproducibility, set rng to 'default'.

rng('default')
numTopics = 20;
solver = 'avb';
mdl = fitlda(counts,numTopics, ...
 'Solver','avb')

===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===

 resume

1-203

0	0.01	Inf	3.057e+03	5.000	0
1	0.02	6.0352e-02	1.936e+03	5.000	0
2	0.01	1.4644e-01	7.363e+02	5.000	0
3	0.01	2.6551e-02	6.207e+02	5.000	0
4	0.01	1.6459e-02	5.593e+02	5.000	0
5	0.01	3.4489e-03	5.473e+02	5.000	0
6	0.01	2.5300e-03	5.386e+02	5.000	0
7	0.01	2.0317e-03	5.318e+02	5.000	0
8	0.01	7.2187e-04	5.294e+02	5.000	0
9	0.01	8.3417e-04	5.322e+02	5.000	0
10	0.01	1.3326e-03	5.278e+02	5.000	0
11	0.01	1.1235e-06	5.278e+02	7.845	11
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 7.8447
 CorpusTopicProbabilities: [0.0543 0.0543 0.0481 0.0525 0.0459 0.0573 0.0537 0.0517 0.0439 0.0467 0.0465 0.0517 0.0496 0.0513 0.0558 0.0476 0.0507 0.0485 0.0445 0.0453]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Resume fitting the LDA model with a lower log-likelihood tolerance.

tolerance = 1e-5;
updatedMdl = resume(mdl,counts, ...
 'LogLikelihoodTolerance',tolerance)

updatedMdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 11.5379
 CorpusTopicProbabilities: [0.0487 0.0540 0.0419 0.0457 0.0426 0.1056 0.0553 0.0465 0.0431 0.0433 0.0431 0.0429 0.0409 0.0440 0.0487 0.0429 0.0841 0.0433 0.0417 0.0415]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

1 Functions — Alphabetical List

1-204

Input Arguments
ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word appears in the jth document.

Note The arguments bag and counts must be the same used to fit ldaMdl.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'LogLikelihoodTolerance',0.001 specifies a log-likelihood tolerance of
0.001.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

 resume

1-205

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns

corresponding to documents.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

This option only applies if you specify the input documents as a matrix of word counts.
Data Types: char

FitTopicConcentraion — Option for fitting topic concentration parameter
true | false

Option for fitting topic concentration parameter, specified as the comma-separated pair
consisting of 'FitTopicConcentration' and either true or false. If true, then the
function fits the scalar concentration parameter in the Dirichlet prior.

The default value is the value used to fit lda.
Example: 'FitTopicConcentration',true
Data Types: logical

FitTopicProbabilities — Option for fitting topic probabilities
true | false

Option for fitting topic probabilities, specified as the comma-separated pair consisting of
'FitTopicProbabilities' and either true or false. If true, then the function fits
the topic probabilities.

The default value is the value used to fit lda.
Example: 'FitTopicProbabilities',true
Data Types: logical

IterationLimit — Maximum number of iterations
100 (default) | positive integer

1 Functions — Alphabetical List

1-206

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

ValidationData — Validation data to monitor optimization convergence
[] (default) | bagOfWords object | sparse matrix of word counts

Validation data to monitor optimization convergence, specified as the comma-separated
pair consisting of 'ValidationData' and a bagOfWords object, or a sparse matrix of
word counts. If the validation data is a matrix, then the data must have the same
orientation and the same number of words as the input documents.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

• 0 – Do not display verbose output.
• 1 – Display progress information.

Example: 'Verbose',0

Output Arguments
updatedMdl — Updated LDA model
ldaModel object (default)

Updated LDA model, specified as an ldaMOdel object.

 resume

1-207

See Also
bagOfWords | fitlda | ldaModel | logp | predict | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

1 Functions — Alphabetical List

1-208

stopWords
Stop word list

Syntax
words = stopWords

Description
words = stopWords returns a string array of common words which can be removed
from documents before analysis.

Examples

List of Stop Words

View list of stop words usually removed from documents before analysis. Reshape the
output for readability.

words = stopWords;
reshape(words, [], 5)

ans =

 38×5 string array

 "a" "doesn't" "in" "she'll" "we're"
 "about" "doesnt" "instead" "shell" "we've"
 "above" "doing" "into" "should" "weve"
 "across" "done" "is" "since" "were"
 "after" "don't" "isn't" "so" "what"
 "all" "dont" "isnt" "some" "what's"
 "along" "during" "it" "such" "whats"
 "also" "each" "it'll" "than" "when"

 stopWords

1-209

 "am" "either" "itll" "that" "when's"
 "an" "for" "it's" "the" "whens"
 "and" "from" "its" "their" "where"
 "any" "given" "let's" "them" "whether"
 "are" "had" "lets" "then" "which"
 "aren't" "has" "may" "there" "while"
 "arent" "have" "me" "therefore" "who"
 "as" "having" "more" "these" "who'll"
 "at" "he" "most" "they" "wholl"
 "be" "he'd" "much" "this" "who's"
 "because" "hed" "must" "those" "whos"
 "been" "he'll" "my" "through" "who've"
 "before" "her" "no" "to" "whove"
 "being" "here" "not" "too" "will"
 "between" "hers" "now" "towards" "with"
 "both" "him" "of" "under" "within"
 "but" "himself" "on" "until" "without"
 "by" "his" "one" "us" "won't"
 "can" "how" "only" "use" "would"
 "can't" "how's" "or" "used" "wouldn't"
 "cant" "hows" "other" "uses" "you"
 "cannot" "however" "our" "using" "you'd"
 "could" "i" "out" "very" "youd"
 "couldn't" "i'd" "over" "want" "you'll"
 "couldnt" "i'll" "said" "was" "youll"
 "did" "i'm" "says" "wasn't" "you're"
 "didn't" "im" "see" "wasnt" "youre"
 "didnt" "i've" "she" "we" "you've"
 "do" "ive" "she'd" "we'd" "youve"
 "does" "if" "shed" "we'll" "your"

Remove Stop Words from Documents

Remove the stop words from an array of documents by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.
documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2×1 tokenizedDocument:

1 Functions — Alphabetical List

1-210

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Remove the stop words using the stopWords function to input a list of stop words
directly into removeWords.

newDocuments = removeWords(documents,stopWords)

newDocuments =
 2×1 tokenizedDocument:

(1,1) 3 tokens: example short sentence
(2,1) 3 tokens: second short sentence

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

bag =
bagOfWords with 7 words and 2 documents:

 an example of a short …
 1 1 1 1 1
 0 0 0 1 1

Remove the stop words using the stopWords function to input a list of stop words
directly into removeWords.

newBag = removeWords(bag,stopWords)

newBag =
bagOfWords with 4 words and 2 documents:

 example short sentence second

 stopWords

1-211

 1 1 1 0
 0 1 1 1

See Also
bagOfWords | removeInfrequentWords | removeLongWords | removeShortWords
| removeWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-212

string
Convert scalar document to string vector

Syntax
words = string(document)

Description
words = string(document) converts a scalar tokenizedDocument to a string array
of words.

Examples

Convert Document to String

Convert a scalar tokenized document to a string array of words.

document = tokenizedDocument("an example of a short sentence")

document =
 tokenizedDocument:

 6 tokens: an example of a short sentence

words = string(document)

words = 1x6 string array
 "an" "example" "of" "a" "short" "sentence"

 string

1-213

Input Arguments
document — Input document
scalar tokenizedDocument

Input document, specified as a scalar tokenizedDocument object.

Output Arguments
words — Output words
string vector

Output words, returned as a string vector.

See Also
context | doc2cell | doclength | joinWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-214

textscatter
2-D scatter plot of text

Syntax
ts = textscatter(x,y,str)
ts = textscatter(xy,str)
ts = textscatter(ax, ___)
ts = textscatter(___ ,Name,Value)

Description
ts = textscatter(x,y,str) creates a text scatter plot with elements of str at the
locations specified by the vectors x and y, and returns the resulting TextScatter object.

ts = textscatter(xy,str) uses locations specified by the rows of xy. This syntax is
equivalent to textscatter(xy(:,1),xy(:,2),str).

ts = textscatter(ax, ___) plots into axes ax. You can use any input arguments
from previous syntaxes.

ts = textscatter(___ ,Name,Value) specifies additional TextScatter properties
using one or more name-value pair arguments.

Examples

Create Text Scatter Plot

Plot a string array of numbers at random points on a text scatter plot.

x = rand(50,1);
y = rand(50,1);
str = string(1:50);

 textscatter

1-215

figure
textscatter(x,y,str);

Alternatively, you can pass the coordinates x and y as a matrix xy, where x and y are
the columns of xy.

xy = [x y];
figure
textscatter(xy,str)

1 Functions — Alphabetical List

1-216

Specify Word Colors

Create text scatter plot of a word embedding and specify word colors.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 textscatter

1-217

 Dimension: 50
 Vocabulary: [1×9999 string]

Convert the first 500 words to vectors using word2vec. V is a matrix of word vectors of
length 50.

words = emb.Vocabulary(1:500);
V = word2vec(emb,words);
size(V)

ans =

 500 50

Embed the word vectors in two-dimensional space using tsne.

XY = tsne(V);

Plot the words at the coordinates specified by XY in a 2-D text scatter plot. Specify the
word colors to be random.

numWords = numel(words);
colorData = rand(numWords,3);
figure
textscatter(XY,words, ...
 'ColorData',colorData)
title("Word Embedding t-SNE Plot")

1 Functions — Alphabetical List

1-218

Input Arguments
x — x values
vector

x values, specified as a vector. x, y, and str must be of equal length.
Example: [1 2 3]

y — y values
vector

 textscatter

1-219

y values, specified as a vector. x, y, and str must be of equal length.
Example: [1 2 3]

xy — x and y values
matrix

x and y values, specified as a matrix with two columns. xy(i,1) and xy(i,2)
correspond to the x and y values of the ith element of str, respectively. xy must have the
numel(str) rows.

textscatter(xy,str) is equivalent to textscatter(xy(:,1),xy(:,2),str).
Example: [1 2 3]

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array or cell array of character vectors. x, y, and str
must be of equal length.
Example: ["one" "two" "three"]
Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see
TextScatter Properties.

1 Functions — Alphabetical List

1-220

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified by a scalar from 0 through 100. To show all
text, set TextDensityPercentage to 100. To show no text, set
TextDensityPercentage to 0.

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the
text labels to this length and adds ellipses at the point of truncation.
Example: 10

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

'auto' — For each marker, use the same color as the corresponding text labels.

• 'none' — do not show markers.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a

three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1], for
example, [0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[] (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

• RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1], for
example, [0.5 0.6 0.7].

 textscatter

1-221

• Three-column matrix of RGB triplets — Use a different color for each text label in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of text labels.

• Categorical vector — Use a different color for each category in the vector. Specify
ColorData as a vector the same length as XData. Specify the colors for each category
using the Colors property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0,1], for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes.
Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments
ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart
after it has been created.

See Also
textscatter3 | wordcloud

Topics
“Visualize Word Embeddings Using Text Scatter Plots”
“Visualize Text Data Using Word Clouds”
“Prepare Text Data for Analysis”
“Analyze Text Data Using Topic Models”

1 Functions — Alphabetical List

1-222

Introduced in R2017b

 textscatter

1-223

textscatter3
3-D scatter plot of text

Syntax
ts = textscatter3(x,y,zstr)
ts = textscatter3(xyz,str)
ts = textscatter3(ax, ___)
ts = textscatter3(___ ,Name,Value)

Description
ts = textscatter3(x,y,zstr) creates a 3-D text scatter plot with elements of str at
the locations specified by the vectors x, y, and z.

ts = textscatter3(xyz,str) creates a 3-D text scatter plot with elements of str at
the locations specified by the rows of xyz. This syntax is equivalent to
textscatter(xyz(:,1),xyz(:,2),xyz(:,3),str).

ts = textscatter3(ax, ___) plots into axes ax.

ts = textscatter3(___ ,Name,Value) specifies additional TextScatter properties
using one or more name-value pair arguments.

Examples

Create 3-D Text Scatter Plot

Plot a string array of numbers at random points on a 3-D text scatter plot.

x = rand(50,1);
y = rand(50,1);
z = rand(50,1);
str = string(1:50);

1 Functions — Alphabetical List

1-224

figure
textscatter3(x,y,z,str);

Alternatively, you can pass the coordinates x, y, and z as a matrix xyz, where x, y, and z
are the columns of xyz.

xyz = [x y z];
figure
textscatter3(xyz,str)

 textscatter3

1-225

Specify Word Colors

Create text scatter plot of a word embedding and specify word colors.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.
filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

1 Functions — Alphabetical List

1-226

 Dimension: 50
 Vocabulary: [1×9999 string]

Convert the first 500 words to vectors using word2vec. V is a matrix of word vectors of
length 50.

words = emb.Vocabulary(1:500);
V = word2vec(emb,words);
size(V)

ans =

 500 50

Embed the word vectors in a three-dimensional space using tsne.

XYZ = tsne(V,'NumDimensions',3);

Plot the words at the coordinates specified by XYZ in a 3-D text scatter plot. Specify the
word colors to be random.

numWords = numel(words);
colorData = rand(numWords,3);
figure
textscatter3(XYZ,words, ...
 'ColorData',colorData)
title("Word Embedding t-SNE Plot")

 textscatter3

1-227

Input Arguments
x — x values
vector

x values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

y — y values
vector

1 Functions — Alphabetical List

1-228

y values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

z — z values
vector

z values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array, or cell array of character vectors. x, y, z, and str
must be of equal length.
Example: ["one" "two" "three"]
Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see
TextScatter Properties.

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

 textscatter3

1-229

Percentage of text data to show, specified by a scalar from 0 through 100. To show all
text, set TextDensityPercentage to 100. To show no text, set
TextDensityPercentage to 0.

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the
text labels to this length and adds ellipses at the point of truncation.
Example: 10

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

'auto' — For each marker, use the same color as the corresponding text labels.

• 'none' — do not show markers.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a

three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1], for
example, [0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[] (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

• RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a
three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1], for
example, [0.5 0.6 0.7].

1 Functions — Alphabetical List

1-230

• Three-column matrix of RGB triplets — Use a different color for each text label in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of text labels.

• Categorical vector — Use a different color for each category in the vector. Specify
ColorData as a vector the same length as XData. Specify the colors for each category
using the Colors property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0,1], for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes.
Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments
ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart
after it has been created.

See Also
textscatter | wordcloud

Topics
“Visualize Word Embeddings Using Text Scatter Plots”
“Visualize Text Data Using Word Clouds”
“Prepare Text Data for Analysis”
“Analyze Text Data Using Topic Models”

 textscatter3

1-231

Introduced in R2017b

1 Functions — Alphabetical List

1-232

tfidf
Term Frequency–Inverse Document Frequency (tf-idf) matrix

Syntax
M = tfidf(bag)
M = tfidf(bag,documents)
M = tfidf(___ ,Name,Value)

Description
M = tfidf(bag) returns a Term Frequency-Inverse Document Frequency (tf-idf)
matrix based on the bag-of-words model bag.

M = tfidf(bag,documents) returns a tf-idf matrix for the documents in documents
by using the inverse document frequency (IDF) factor computed from the bag-of-words
model bag.

M = tfidf(___ ,Name,Value) specifies additional options using one or more name-
value pair arguments.

Examples

Create Tf-idf Matrix

Create a Term Frequency–Inverse Document Frequency (tf-idf) matrix from a bag-of-
words model.

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

 tfidf

1-233

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans =

 Columns 1 through 7

 3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452
 0 0 0 0 0 4.5287 0
 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0
 0 0 2.7344 0 0 0 0

 Columns 8 through 10

 3.8918 2.4720 2.5520
 0 0 0
 0 0 2.5520
 0 0 0
 0 0 0
 0 0 0
 0 0 0

1 Functions — Alphabetical List

1-234

 0 0 0
 0 0 2.5520
 0 0 0

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Create tf-idf Matrix from New Documents

Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-
words model and an array of new documents.

Load the sonnetsDocuments data and create a bag-of-words model.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Create a tf-idf matrix for an array of new documents using the inverse document
frequency (IDF) factor computed from bag.

newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."
 "if music be the food of love, play on."]);
M = tfidf(bag,newDocuments)

 tfidf

1-235

M =
 (1,7) 3.2452
 (1,36) 1.2303
 (2,197) 3.4275
 (2,313) 3.6507
 (2,387) 0.6061
 (1,1205) 4.7958
 (1,1835) 3.6507
 (2,1917) 5.0370

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Specify TF Weight Formulas

Specify the TF weight formula of a Term Frequency-Inverse Document Frequency (tf-idf)
matrix.

Load the sonnetsDocuments data and create a bag-of-words model.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Create a tf-idf matrix. View the first 10 rows and columns.

1 Functions — Alphabetical List

1-236

M = tfidf(bag);
full(M(1:10,1:10))

ans =

 Columns 1 through 7

 3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452
 0 0 0 0 0 4.5287 0
 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0
 0 0 2.7344 0 0 0 0

 Columns 8 through 10

 3.8918 2.4720 2.5520
 0 0 0
 0 0 2.5520
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 2.5520
 0 0 0

You can change the contributions made by the TF and IDF factors to the tf-idf matrix by
specifying the TF and IDF weight formulas.

To ignore how many times a word appears in a document, use the binary option of
'TFWeight'. Create a tf-idf matrix and set 'TFWeight' to 'binary'. View the first 10
rows and columns.
M = tfidf(bag,'TFWeight','binary');
full(M(1:10,1:10))

ans =

 Columns 1 through 7

 tfidf

1-237

 3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 2.2644 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0
 0 0 2.7344 0 0 0 0

 Columns 8 through 10

 1.9459 2.4720 2.5520
 0 0 0
 0 0 2.5520
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 2.5520
 0 0 0

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

1 Functions — Alphabetical List

1-238

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row of the words of a single document.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Normalized',true specifies to normalize the word counts.

TFWeight — Method to set term frequency factor
'raw' (default) | 'binary' | 'log'

Method to set term frequency (TF) factor, specified as the comma-separated pair
consisting of 'TFWeight' and one of the following:

• 'raw' – Set the TF factor to the unchanged word counts.
• 'binary' – Set the TF factor to the matrix of ones and zeros where the ones indicate

whether a word is in a document.
• 'log' – Set the TF factor to 1 + log(bag.Counts).

Example: 'TFWeight','binary'
Data Types: char

IDFWeight — Method to set inverse document frequency factor
'normal' (default) | 'unary' | 'smooth' | 'max' | 'probabilistic'

Method to set inverse document frequency (IDF) factor, specified as the comma-
separated pair consisting of 'IDFWeight' and one of the following:

• 'normal' – Set the IDF factor to log(N/NT).
• 'unary' – Set the IDF factor to 1.
• 'smooth' – Set the IDF factor to log(1+N/NT).
• 'max' – Set the IDF factor to log(1+max(NT)/NT).

 tfidf

1-239

• 'probabilistic' – Set the IDF factor to log((N-NT)/NT).

where N is the number of documents in the bag, and NT is the number of documents
containing each word which is equivalent to sum(bag.Counts).
Example: 'IDFWeight','smooth'
Data Types: char

Normalized — Option to normalize word counts
false (default) | true

Option to normalize word counts, specified as the comma-separated pair consisting of
'Normalized' and true or false. If true, then the function normalizes each vector of
word counts in the Euclidean norm.
Example: 'Normalized',true
Data Types: logical

DocumentsIn — Orientation of output documents
'rows' (default) | 'columns'

Orientation of output documents in the word count matrix, specified as the comma-
separated pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Return a matrix of word counts with rows corresponding to documents.
• 'columns' – Return a transposed matrix of word counts with columns corresponding

to documents.

Data Types: char

Output Arguments
M — Output Term Frequency-Inverse Document Frequency matrix
sparse matrix

Output Term Frequency-Inverse Document Frequency matrix, specified as a sparse
matrix.

1 Functions — Alphabetical List

1-240

See Also
bagOfWords | encode | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 tfidf

1-241

topkwords
Most important words in bag-of-words model or LDA topic

Syntax
T = topkwords(bag)
T = topkwords(bag,k)

T = topkwords(ldaMdl,k,topicIdx)
T = topkwords(ldaMdl,k,topicIdx,'Scaling',Scaling)

Description
T = topkwords(bag) returns a table of the five words with the largest word counts in
bag-of-words model bag.

T = topkwords(bag,k) returns a table of the k words with the largest word counts.

T = topkwords(ldaMdl,k,topicIdx) returns a table of the k words with the highest
probabilities in the latent Dirichlet allocation (LDA) topic topicIdx in the LDA model
ldaMdl.

T = topkwords(ldaMdl,k,topicIdx,'Scaling',Scaling) applies scaling to the
LDA word scores.

Examples

Most Frequent Words of Bag-of-Words Model

Create a table of the most frequent words of a bag-of-words model.

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

1 Functions — Alphabetical List

1-242

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Find the top five words.

T = topkwords(bag)

T=5x2 table
 Word Count
 ______ _____

 "thy" 281
 "thou" 234
 "love" 162
 "thee" 161
 "doth" 88

Find the top 20 words.

k = 20;
T = topkwords(bag,k)

T=20x2 table
 Word Count
 ________ _____

 "thy" 281
 "thou" 234
 "love" 162

 topkwords

1-243

 "thee" 161
 "doth" 88
 "mine" 63
 "shall" 59
 "eyes" 56
 "sweet" 55
 "time" 53
 "beauty" 52
 "nor" 52
 "art" 51
 "yet" 51
 "o" 50
 "heart" 50

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Highest Probability Words of LDA Topic

Create a table of the words with highest probability of an LDA topic.

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents);

Fit an LDA model with 20 topics.

1 Functions — Alphabetical List

1-244

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0249502 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.00	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Find the top 20 words of the first topic.

k = 20;
topicIdx = 1;
T = topkwords(mdl,k,topicIdx)

Find the top 20 words of the first topic and use inverse mean scaling on the scores.

T = topkwords(mdl,k,topicIdx,'Scaling','inversemean')

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

 topkwords

1-245

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

k — Number of words
nonnegative integer

Number of words to return, specified as a positive integer.
Example: 20

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.

Scaling — Scaling to apply to topic word probabilities
'none' (default) | 'inversemean'

Scaling to apply to topic word probabilities, specified as the comma-separated pair
consisting of 'Scaling' and one of the following:

• 'none' – Return posterior word probabilities.
• 'inversemean' – Normalize the posterior word probabilities per topic by the

geometric mean of the posterior probabilities for this word across all topics. The
function uses the formula Phi.*(log(Phi)-mean(log(Phi),1)), where Phi
corresponds to ldaMdl.TopicWordProbabilities.

Example: 'Scaling','inversemean'
Data Types: char

1 Functions — Alphabetical List

1-246

Output Arguments
T — Table of top words
table

Table of top words sorted in order of importance.

When the input is a bag-of-words model, the table has the following columns:
Word Word specified as a string.
Count The number of times the word appears in the bag-of-words model.

When the input is an LDA model, the table has the following columns:
Word Word specified as a string.
Score The word probability for the given LDA topic.

See Also
bagOfWords | encode | ldaModel | tfidf

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”

Introduced in R2017b

 topkwords

1-247

trainWordEmbedding
Train word embedding

Syntax
emb = trainWordEmbedding(filename)
emb = trainWordEmbedding(documents)
emb = trainWordEmbedding(___ ,Name,Value)

Description
emb = trainWordEmbedding(filename) trains a word embedding using the training
data stored in the text file filename. The file is a collection of documents stored in
UTF-8 with one document per line and words separated by white-space.

emb = trainWordEmbedding(documents) trains a word embedding using documents
by creating a temporary file with writeTextDocument, and then trains an embedding
using the temporary file.

emb = trainWordEmbedding(___ ,Name,Value) specifies additional options using
one or more name-value pair arguments. For example, 'Dimension',50 specifies the
word embedding dimension to be 50.

Examples

Train Word Embedding from File

Train a word embedding of dimension 20 using the example text file
exampleSonnetsDocuments.txt. This file contains preprocessed versions of
Shakespeare's sonnets, with one sonnet per line and words separated by a space.

filename = "exampleSonnetsDocuments.txt";
emb = trainWordEmbedding(filename)

1 Functions — Alphabetical List

1-248

Training: 100% Loss: 2.65528 Remaining time: 0 hours 0 minutes.
emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1x502 string]

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb,words);
XY = tsne(V);
textscatter(XY,words)

 trainWordEmbedding

1-249

Train Word Embedding from Documents

Train a word embedding using the example data sonnetsDocuments. This function
returns preprocessed versions of Shakespeare's sonnets as a tokenizedDocument array.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data.

documents = sonnetsDocuments;
emb = trainWordEmbedding(documents)

Training: 100% Loss: 0 Remaining time: 0 hours 0 minutes.

emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1x401 string]

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb,words);
XY = tsne(V);
textscatter(XY,words)

1 Functions — Alphabetical List

1-250

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Specify Word Embedding Options

Train a word embedding using the example data sonnetsDocuments. This function
returns preprocessed versions of Shakespeare's sonnets as a tokenizedDocument array.

To use the example file sonnetsDocuments.m, add the example folder to the path.

 trainWordEmbedding

1-251

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data.

documents = sonnetsDocuments;

Specify the dimension to be 50. To reduce the number of words discarded by the model,
set 'MinCount' to 3. To train for longer, set the number of epochs to 10.

emb = trainWordEmbedding(documents, ...
 'Dimension',50, ...
 'MinCount',3, ...
 'NumEpochs',10)

Training: 100% Loss: 2.69927 Remaining time: 0 hours 0 minutes.

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1x750 string]

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb, words);
XY = tsne(V);
textscatter(XY,words)

1 Functions — Alphabetical List

1-252

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

 trainWordEmbedding

1-253

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Dimension',50 specifies the word embedding dimension to be 50.

Dimension — Dimension of word embedding
100 (default) | nonnegative integer

Dimension of the word embedding, specified as the comma-separated pair consisting of
'Dimension' and a nonnegative integer.
Example: 300

Window — Size of context window
5 (default) | nonnegative integer

Size of the context window, specified as the comma-separated pair consisting of
'Window' and a nonnegative integer.
Example: 10

Model — Model
'skipgram' (default) | 'cbow'

Model, specified as the comma-separated pair consisting of 'Model' and 'skipgram'
(skip gram) or 'cbow' (continuous bag-of-words).
Example: 'cbow'

DiscardFactor — Factor to determine word discard rate
1e-4 (default) | positive scalar

Factor to determine the word discard rate, specified as the comma-separated pair
consisting of 'DiscardFactor' and a positive scalar. The function discards a word from

1 Functions — Alphabetical List

1-254

the input window with probability 1-sqrt(t/f) - t/f where f is the unigram
probability of the word, and t is DiscardFactor. Usually, DiscardFactor is in the
range of 1e-3 through 1e-5.
Example: 0.005

LossFunction — Loss function
'ns' (default) | 'hs' | 'softmax'

Loss function, specified as the comma-separated pair consisting of 'LossFunction' and
'ns' (negative sampling), 'hs' (hierarchical softmax), or 'softmax' (softmax).
Example: 'hs'

NumNegativeSamples — Number of negative samples
5 (default) | positive integer

Number of negative samples for the negative sampling loss function, specified as the
comma-separated pair consisting of 'NumNegativeSamples' and a positive integer.
This option is only valid when LossFunction is 'ns'.
Example: 10

NumEpochs — Number of epochs
5 (default) | positive integer

Number of epochs for training, specified as the comma-separated pair consisting of
'NumEpochs' and a positive integer.
Example: 10

MinCount — Minimum count of words
5 (default) | positive integer

Minimum count of words to include in the embedding, specified as the comma-separated
pair consisting of 'MinCount' and a positive integer. The function discards words that
appear fewer than MinCount times in the training data from the vocabulary.
Example: 10

NGramRange — Inclusive range for subword n-grams
[3 6] (default) | vector of two nonnegative integers

 trainWordEmbedding

1-255

Inclusive range for subword n-grams, specified as the comma-separated pair consisting of
'NGramRange' and a vector of two nonnegative integers [min max]. If you do not want
to use n-grams, then set 'NGramRange' to [0 0].
Example: [5 10]

InitialLearnRate — Initial learn rate
0.05 (default) | positive scalar

Initial learn rate, specified as the comma-separated pair consisting of
'InitialLearnRate' and a positive scalar.
Example: 0.01

UpdateRate — Rate for updating learn rate
100 (default) | positive integer

Rate for updating the learn rate, specified as the comma-separated pair consisting of
'UpdateRate' and a positive integer. The learn rate decreases to zero linearly in steps
every N words where N is the UpdateRate.
Example: 50

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

• 0 – Do not display verbose output.
• 1 – Display progress information.

Example: 'Verbose',0

Output Arguments
emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

1 Functions — Alphabetical List

1-256

Tips
The training algorithm uses the number of threads given by the function
maxNumCompThreads. To learn how to change the number of threads used by MATLAB,
see maxNumCompThreads.

See Also
ismember | readWordEmbedding | tokenizedDocument | vec2word | word2vec |
wordEmbedding | writeWordEmbedding

Topics
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

 trainWordEmbedding

1-257

transform
Transform documents into lower-dimensional space

Syntax
dscores = transform(lsaMdl,documents)
dscores = transform(lsaMdl,counts)

dscores = transform(ldaMdl,documents)
dscores = transform(ldaMdl,counts)
dscores = transform(___ ,Name,Value)

Description
dscores = transform(lsaMdl,documents) transforms documents into the semantic
space of the latent semantic analysis (LSA) model lsaMdl.

dscores = transform(lsaMdl,counts) transforms documents represented by the
matrix of word counts into the semantic space of the LSA model lsaMdl.

dscores = transform(ldaMdl,documents) transforms documents into the latent
Dirichlet allocation (LDA) topic probability space of LDA model ldaMdl. The rows of
dscores are the topic mixture representations of the documents.

dscores = transform(ldaMdl,counts) transforms documents represented by the
matrix of word counts into the LDA topic probability space of LDA model ldaMdl.

dscores = transform(___ ,Name,Value) specifies additional options using one or
more name-value pair arguments. These name-value pairs only apply if the input model
is a ldaModel object.

Examples

1 Functions — Alphabetical List

1-258

Transform Documents into LSA Semantic Space

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LSA model with 20 components.

numCompnents = 20;
mdl = fitlsa(bag,numCompnents)

mdl =
 lsaModel with properties:

 NumComponents: 20
 ComponentWeights: [2.7866e+03 515.5889 443.6428 316.4191 295.4065 261.8927 226.1649 186.2160 170.6413 156.6033 151.5275 146.2553 141.6741 135.5318 134.1694 128.9931 124.2382 122.2931 116.5035 116.2590]
 DocumentScores: [154×20 double]
 WordScores: [3092×20 double]
 Vocabulary: [1×3092 string]
 FeatureStrengthExponent: 2

Use transform to transform the first 10 documents into the semantic space of the LSA
model.

dscores = transform(mdl,documents(1:10))

 transform

1-259

dscores =

 5.6059 -1.8559 0.9286 -0.7086 -0.4652 -0.8340 -0.6751 -0.0611 0.2268 1.9320 -0.7289 -1.0864 0.7131 -0.0571 -0.3401 0.0940 -0.4406 1.7507 -1.1534 0.1785
 7.3069 -2.3578 1.8359 -2.3442 -1.5776 -2.0310 -0.7948 -1.3411 -1.1700 1.8839 0.0883 0.4734 -1.1244 0.6795 1.3585 -0.0247 0.3627 -0.5414 -0.0272 -0.0114
 7.1056 -2.3508 -2.8837 -1.0688 -0.3462 -0.6962 -0.0334 0.0472 0.4916 0.6496 -1.1959 -1.0171 -0.4020 1.2953 -0.4583 0.5984 -0.3890 1.1780 0.6413 0.6575
 8.6292 -3.0471 -0.8512 -0.4356 -0.3055 0.4671 1.4219 0.8454 -0.8270 0.4122 2.2082 -1.1770 1.7775 -2.2344 -2.7813 1.4979 0.7486 -2.0593 0.6376 1.0721
 1.0434 1.7490 0.8703 -2.2315 -1.1221 0.2848 2.0522 0.6975 1.7191 -0.2852 0.8879 0.9950 -0.5555 0.8842 -0.0360 1.0050 0.4158 0.5061 0.9602 0.4672
 6.8358 -2.0806 -3.3798 -1.0452 -0.2075 2.0970 0.4477 -0.2080 0.9532 1.6203 0.6653 0.0036 1.0825 0.6396 -0.2154 -0.0794 0.7108 1.8007 -4.0326 -0.3872
 2.3847 0.3923 -0.4323 -1.5340 0.4023 -1.0396 1.0326 -0.3776 0.2101 -1.0944 -0.7513 -0.2894 0.4303 0.1864 0.4922 0.4844 0.5191 -0.2378 0.9528 0.4817
 3.7925 -0.3941 -4.4610 -0.4930 0.4651 0.3404 0.5493 -0.1470 0.5065 0.2566 0.3394 -1.1529 -0.0391 -0.8800 -0.4712 0.9672 0.5457 -0.3639 -0.3085 0.5637
 4.6522 0.7188 -1.1787 -0.8996 0.3360 0.4531 0.1935 -0.3328 -0.8640 -1.6679 -0.8056 -2.1993 0.1808 0.0163 -0.9520 -0.8982 0.6603 3.6451 1.2412 1.9621
 8.8218 -0.8168 -2.5101 1.1197 -0.8673 -1.2336 -0.0768 -0.1943 -0.7629 -0.1222 0.3786 1.1611 0.2326 0.3415 -0.3327 -0.3792 1.7554 0.2526 -2.1574 -0.0193

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Transform Documents into LDA Topic Mixtures

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1

1 Functions — Alphabetical List

1-260

 0 0 0 0 0
 …

Fit an LDA model with five topics.

numTopics = 5;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0249558 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.01	Inf	1.212e+03	1.250	0
1	0.02	1.2300e-02	1.112e+03	1.250	0
2	0.01	1.3254e-03	1.102e+03	1.250	0
3	0.01	2.9402e-05	1.102e+03	1.250	0
===

mdl =
 ldaModel with properties:

 NumTopics: 5
 WordConcentration: 1
 TopicConcentration: 1.2500
 CorpusTopicProbabilities: [0.2000 0.2000 0.2000 0.2000 0.2000]
 DocumentTopicProbabilities: [154×5 double]
 TopicWordProbabilities: [3092×5 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Use transform to transform the documents into a vector of topic probabilities. You can
visualize these mixtures using stacked bar charts. View the topic mixtures of the first 10
documents.

topicMixtures = transform(mdl,documents(1:10));
figure
barh(topicMixtures,'stacked')
xlim([0 1])
title("Topic Mixtures")
xlabel("Topic Probability")
ylabel("Document")
legend("Topic " + string(1:numTopics), ...
 'Location', 'bestoutside')

 transform

1-261

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Transform Word Count Matrix into LDA Topic Mixtures

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

1 Functions — Alphabetical List

1-262

ans =

 154 3092

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to
'default'.

rng('default')
numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.0210512 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.01	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.02	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]
 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Use transform to transform the documents into a vector of topic probabilities.

topicMixtures = transform(mdl,counts(1:10,:))

topicMixtures =

 transform

1-263

 0.0167 0.0035 0.1645 0.0977 0.0433 0.0833 0.0987 0.0033 0.0299 0.0234 0.0033 0.0345 0.0235 0.0958 0.0667 0.0167 0.0300 0.0519 0.0833 0.0300
 0.0711 0.0544 0.0116 0.0044 0.0033 0.0033 0.0431 0.0053 0.0145 0.0421 0.0971 0.0033 0.0040 0.1632 0.1784 0.0937 0.0683 0.0398 0.0954 0.0037
 0.0293 0.0482 0.1078 0.0322 0.0036 0.0036 0.0464 0.0036 0.0064 0.0612 0.0036 0.0176 0.0036 0.0464 0.0906 0.1169 0.0888 0.1115 0.1180 0.0607
 0.0055 0.0962 0.2403 0.0033 0.0296 0.1613 0.0164 0.0955 0.0163 0.0045 0.0172 0.0033 0.0415 0.0404 0.0342 0.0176 0.0417 0.0642 0.0033 0.0676
 0.0341 0.0224 0.0341 0.0645 0.0948 0.0038 0.0189 0.1099 0.0187 0.0560 0.1045 0.0356 0.0668 0.1196 0.0038 0.0931 0.0493 0.0038 0.0038 0.0626
 0.0445 0.0035 0.1167 0.0034 0.0446 0.0583 0.1268 0.0169 0.0034 0.1135 0.0034 0.0034 0.0047 0.0993 0.0909 0.0582 0.0308 0.0887 0.0856 0.0034
 0.1720 0.0764 0.0090 0.0180 0.0325 0.1213 0.0036 0.0036 0.0505 0.0472 0.0348 0.0477 0.0039 0.0038 0.0122 0.0041 0.0036 0.1605 0.1487 0.0465
 0.0043 0.0033 0.1248 0.0033 0.0299 0.0033 0.0690 0.1699 0.0695 0.0982 0.0033 0.0039 0.0620 0.0833 0.0040 0.0700 0.0033 0.1479 0.0033 0.0433
 0.0412 0.0387 0.0555 0.0165 0.0166 0.0433 0.0033 0.0038 0.0048 0.0033 0.0473 0.0474 0.1290 0.1107 0.0089 0.0112 0.0167 0.1555 0.2423 0.0040
 0.0362 0.0035 0.1117 0.0304 0.0034 0.1248 0.0439 0.0340 0.0168 0.0714 0.0034 0.0214 0.0056 0.0449 0.1438 0.0036 0.0290 0.1437 0.0980 0.0304

Input Arguments
lsaMdl — Input LSA model
ldaModel object

Input LSA model, specified as an lsaModel object.

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a tokenizedDocument, then it must be
a column vector. If documents is a string array or a cell array of character vectors, then
it must be a row of the words of a single document.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word appears in the ith document. Otherwise, the value counts(i,j)
corresponds to the number of times the ith word appears in the jth document.

1 Functions — Alphabetical List

1-264

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IterationLimit',200 sets the iteration limit to 200.

Note These name-value pairs only apply if the input model is a ldaModel object.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns

corresponding to documents.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

This option only applies if you specify the input documents as a matrix of word counts.
Data Types: char

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

 transform

1-265

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

Output Arguments
dscores — Output document scores
matrix

Output document scores, returned as a matrix of score vectors.

See Also
bagOfWords | fitlda | fitlsa | ldaModel | logp | lsaModel | predict |
wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

1 Functions — Alphabetical List

1-266

upper
Convert documents to uppercase

Syntax
newDocuments = upper(documents)

Description
newDocuments = upper(documents) converts each lowercase character in the input
documents to the corresponding uppercase character, and leaves all other characters
unchanged.

Examples

Convert Documents to Uppercase

Convert all lowercase characters in an array of documents to uppercase.

documents = tokenizedDocument([
 "An Example of a Short Sentence"
 "A Second Short Sentence"])

documents =
 2x1 tokenizedDocument:

(1,1) 6 tokens: An Example of a Short Sentence
(2,1) 4 tokens: A Second Short Sentence

newDocuments = upper(documents)

newDocuments =
 2x1 tokenizedDocument:

 upper

1-267

(1,1) 6 tokens: AN EXAMPLE OF A SHORT SENTENCE
(2,1) 4 tokens: A SECOND SHORT SENTENCE

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
bagOfWords | docfun | lower | normalizeWords | regexprep | replace |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-268

vec2word
Map embedding vector to word

Syntax
words = vec2word(emb,M)
[words,dist] = vec2word(emb,M)
___ = vec2word(emb,M,k)
___ = vec2word(___ ,'Distance','euclidean')

Description
words = vec2word(emb,M) returns the closest words to the embedding vectors in the
columns of M.

[words,dist] = vec2word(emb,M) returns the closest words to the embedding
vectors in M, and returns the distances dist of each to their source vectors.

___ = vec2word(emb,M,k) returns the top k closest words.

___ = vec2word(___ ,'Distance','euclidean') uses the Euclidean distance
metric.

Examples

Explore Word Embedding

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.
filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 vec2word

1-269

 Dimension: 50
 Vocabulary: [1x9999 string]

Map the words "king", "man" and "woman" to vectors using word2vec.

king = word2vec(emb,"king");
man = word2vec(emb,"man");
woman = word2vec(emb,"woman");

Map the vector king - man + woman to a word using vec2word.

word = vec2word(emb,king - man + woman)

word =
"queen"

Find Closest Words to Vector

Find the top five closest words to a word embedding vector and their distances.

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1×9999 string]

Map the words "king", "man" and "woman" to vectors using word2vec.

king = word2vec(emb,"king");
man = word2vec(emb,"man");
woman = word2vec(emb,"woman");

Map the vector king - man + woman to a word using vec2word. Find the top five
closest words using the Euclidean distance metric.

1 Functions — Alphabetical List

1-270

k = 5;
M = king - man + woman;
[words,dist] = vec2word(emb,M,k, ...
 'Distance','euclidean');

Plot the words and distances in a bar chart.

figure;
bar(dist)
xticklabels(words)
xlabel("Word")
ylabel("Distance")
title("Distances to Vector")

 vec2word

1-271

Input Arguments
emb — Input word embedding
word embedding

Input word embedding, specified as a wordEmbedding object.

M — Word embedding vectors
matrix

Word embedding vectors, specified as a matrix. Each column of M corresponds to a word
embedding vector. M must have emb.Dimension columns.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Distance','euclidean' specifies to use the Euclidean distance metric.

Distance — Distance metric
'cosine' (default) | 'euclidean'

Distance metric, specified as the comma-separated pair consisting of 'Distance' and
'euclidean' or 'cosine'.
Example: 'euclidean'

Output Arguments
words — Output words
string vector

Output words, returned as a string vector.

dist — Distance of words to source vectors
vector

1 Functions — Alphabetical List

1-272

Distance of words to their source vectors, returned as a vector.

See Also
ismember | readWordEmbedding | trainWordEmbedding | word2vec |
wordEmbedding | writeWordEmbedding

Topics
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

 vec2word

1-273

word2vec
Map word to embedding vector

Syntax
M = word2vec(emb,words)

Description
M = word2vec(emb,words) returns the embedding vectors of words in the embedding
emb. If a word is not in the embedding vocabulary, then the function returns a column of
NaNs.

Examples

Explore Word Embedding

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1x9999 string]

Map the words "king", "man" and "woman" to vectors using word2vec.

king = word2vec(emb,"king");
man = word2vec(emb,"man");
woman = word2vec(emb,"woman");

1 Functions — Alphabetical List

1-274

Map the vector king - man + woman to a word using vec2word.

word = vec2word(emb,king - man + woman)

word =
"queen"

Input Arguments
emb — Input word embedding
word embedding

Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

Output Arguments
M — Matrix of word embedding vectors
matrix

Matrix of word embedding vectors. Each column of M corresponds to a word embedding
vector. M has emb.Dimension columns.

See Also
ismember | readWordEmbedding | trainWordEmbedding | vec2word |
wordEmbedding | writeWordEmbedding

Topics
“Visualize Word Embeddings Using Text Scatter Plots”

 word2vec

1-275

“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

1 Functions — Alphabetical List

1-276

wordcloud
Create word cloud chart from bag-of-words model or LDA model

Text Analytics Toolbox™ extends the functionality of the wordcloud (MATLAB)
function. It adds support for creating word clouds directly from string arrays, and
creating word clouds from bag-of-words models and LDA topics. For the wordcloud
(MATLAB) reference page, see wordcloud.

Syntax
wc = wordcloud(str)
wc = wordcloud(bag)
wc = wordcloud(ldaMdl,topicIdx)
wc = wordcloud(___ ,Name,Value)

Description
wc = wordcloud(str) creates a word cloud chart by tokenizing and preprocessing the
text in str, and then displaying the words with sizes corresponding to the word
frequency counts.

wc = wordcloud(bag) creates a word cloud chart from the bag-of-words model bag.

wc = wordcloud(ldaMdl,topicIdx) creates a word cloud chart from the topic with
index topicIdx of the LDA model ldaMdl.

wc = wordcloud(___ ,Name,Value) specifies additional WordCloudChart properties
using one or more name-value pair arguments.

Examples

 wordcloud

1-277

Create Word Cloud from Text Data

Extract the text from sonnets.txt using extractFileText.

str = extractFileText("sonnets.txt");

View the first few characters of the text.

extractBefore(str,269)

ans =
 "THE SONNETS

 by William Shakespeare

 I

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,
 But as the riper should by time decease,
 His tender heir might bear his memory:
 But thou, contracted to thine own bright eyes,"

Display the words from the sonnets in a word cloud.

figure
wordcloud(str)

ans =
 WordCloudChart with properties:

 WordData: [1×2659 string]
 SizeData: [1×2659 double]
 MaxDisplayWords: 100

 Show all properties

1 Functions — Alphabetical List

1-278

Create Word Cloud from Bag-of-Words Model

Load the sonnetsDocuments data. sonnetsDocuments returns a
tokenizedDocument array of preprocessed versions of Shakespeare's sonnets.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data and create a bag-of-words model.

 wordcloud

1-279

documents = sonnetsDocuments;
documents(1:10)

ans =
 10×1 tokenizedDocument:

 (1,1) 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 (2,1) 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 (3,1) 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 (4,1) 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 (5,1) 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 (6,1) 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 (7,1) 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 (8,1) 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 (9,1) 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
(10,1) 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a bag-of-words model from the documents

bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);

1 Functions — Alphabetical List

1-280

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Create Word Cloud from LDA Topic

Load the sonnetsDocuments data and create a bag-of-words model.
sonnetsDocuments returns a tokenizedDocument array of preprocessed versions of
Shakespeare's sonnets.

 wordcloud

1-281

To use the example file sonnetsDocuments.m, add the example folder to the path. To
reproduce the results, set rng to 'default'.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)
rng('default')

Load the sonnetsDocuments data and create a bag-of-words model.

documents = sonnetsDocuments;
bag = bagOfWords(documents)

bag =
bagOfWords with 3092 words and 154 documents:

 fairest creatures desire increase thereby …
 1 1 1 1 1
 0 0 0 0 0
 …

Fit an LDA model with 20 topics.

mdl = fitlda(bag,20)

Initial topic assignments sampled in 0.0208541 seconds.
===
| Iteration | Time per | Relative | Training | Topic | Concentr. |
| | iter., s |Delta log(L)| perplexity | concentr. | iterations |
===
0	0.01	Inf	1.159e+03	5.000	0
1	0.03	5.4884e-02	8.028e+02	5.000	0
2	0.03	4.7400e-03	7.778e+02	5.000	0
3	0.03	3.4597e-03	7.602e+02	5.000	0
4	0.03	3.4662e-03	7.430e+02	5.000	0
5	0.03	2.9259e-03	7.288e+02	5.000	0
6	0.03	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500]

1 Functions — Alphabetical List

1-282

 DocumentTopicProbabilities: [154×20 double]
 TopicWordProbabilities: [3092×20 double]
 Vocabulary: [1×3092 string]
 FitInfo: [1×1 struct]

Visualize the first four topics using word clouds.

figure
for topicIdx = 1:4
 subplot(2,2,topicIdx)
 wordcloud(mdl,topicIdx);
 title("Topic: " + topicIdx)
end

 wordcloud

1-283

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]
Data Types: string | char | cell

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'HighlightColor','blue' specifies the highlight color to be blue.

1 Functions — Alphabetical List

1-284

The WordCloudChart properties listed here are only a subset. For a complete list, see
WordCloudChart Properties.

MaxDisplayWords — Maximum number of words to display
100 (default) | nonnegative integer

Maximum number of words to display, specified as a non-negative integer.

Color — Word color
[0.2510 0.2510 0.2510] (default) | RGB triplet | character vector containing a color
name | matrix

Word color, specified as an RGB triplet, a character vector containing a color name, or an
N-by-3 matrix where N is the length of WordData. If Color is a matrix, then each row
corresponds to an RGB triplet for the corresponding word in WordData.

An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors
by name. This table lists the long and short color name options and the equivalent RGB
triplet values.
Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Example: 'blue'
Example: [0 0 1]

HighlightColor — Word highlight color
[0.8510 0.3255 0.0980] (default) | RGB triplet | character vector containing a color
name

 wordcloud

1-285

Word highlight color, specified as an RGB triplet, or a character vector containing a color
name.

An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors
by name. This table lists the long and short color name options and the equivalent RGB
triplet values.
Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Example: 'blue'
Example: [0 0 1]

Shape — Shape of word cloud
'oval' (default) | 'rectangle'

Shape of word cloud chart, specified as 'oval' or 'rectangle'.
Example: 'rectangle'

Output Arguments
wc — WordCloudChart object
WordCloudChart object

WordCloudChart object. You can modify the properties of a WordCloudChart after it is
created.

1 Functions — Alphabetical List

1-286

See Also
textscatter | textscatter3 | wordCloudCounts

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
“Analyze Text Data Using Topic Models”

Introduced in R2017b

 wordcloud

1-287

wordCloudCounts
Count words for word cloud creation

Syntax
T = wordCloudCounts(str)

Description
T = wordCloudCounts(str) tokenizes and preprocesses the text in str for word cloud
creation and returns a table T of words and frequency counts.

Examples

Word Cloud Frequency Counts

Extract the text from sonnets.txt using extractFileText.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I");
ii = strfind(str,"II");
start = i(1);
fin = ii(1);
extractBetween(str,start,fin-1)

ans =
 "I

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,
 But as the riper should by time decease,
 His tender heir might bear his memory:

1 Functions — Alphabetical List

1-288

 But thou, contracted to thine own bright eyes,
 Feed'st thy light's flame with self-substantial fuel,
 Making a famine where abundance lies,
 Thy self thy foe, to thy sweet self too cruel:
 Thou that art now the world's fresh ornament,
 And only herald to the gaudy spring,
 Within thine own bud buriest thy content,
 And tender churl mak'st waste in niggarding:
 Pity the world, or else this glutton be,
 To eat the world's due, by the grave and thee.

 "

Tokenize and preprocess the sonnets text and create a table of word frequency counts.

T = wordCloudCounts(str);
head(T)

ans=8x2 table null
 Word Count
 ________ _____

 "thy" 281
 "thou" 234
 "love" 215
 "thee" 161
 "eyes" 93
 "doth" 88
 "time" 78
 "beauty" 75

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["an example of a short sentence"; "a second short sentence"]
Data Types: string | char | cell

 wordCloudCounts

1-289

Output Arguments
T — Table of word counts
table

Table of words counts sorted in order of importance. The table has columns:
Word Scalar string of the word.
Count The number of times the word appears in the documents. The

function groups the counts of words that differ only by case or have
a common stem according to normalizeWords. For example, the
function groups the counts for "walk", "Walking", "walking", and
"walks".

See Also
textscatter | textscatter3 | wordcloud

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
“Analyze Text Data Using Topic Models”

Introduced in R2017b

1 Functions — Alphabetical List

1-290

writeTextDocument
Write documents to text file

Syntax
writeTextDocument(documents,filename)
writeTextDocument(documents,filename,'Append',true)

Description
writeTextDocument(documents,filename) writes documents to the specified text
file. The function writes one document per line with a space between each word in
UTF-8.

writeTextDocument(documents,filename,'Append',true) appends to the file
instead of overwriting.

Examples

Write Documents to Text File

Write an array of documents to a text file.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

 writeTextDocument

1-291

filename = "documents.txt";
writeTextDocument(documents,filename)

Append Documents to Text File

Write an array of documents to a text file by appending the documents one at a time.

Create an array of tokenized documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2x1 tokenizedDocument:

(1,1) 6 tokens: an example of a short sentence
(2,1) 4 tokens: a second short sentence

Write the first document to the file.

filename = "documents.txt";
writeTextDocument(documents(1),filename)

View the contents of the file using extractFileText.

str = extractFileText(filename)

str =
"an example of a short sentence"

Append the second document to the text file.

writeTextDocument(documents(2),filename,'Append',true)

View the contents of the file using extractFileText.

str = extractFileText(filename)

str =
 "an example of a short sentence

1 Functions — Alphabetical List

1-292

 a second short sentence"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

See Also
extractFileText | tokenizedDocument

Topics
“Extract Text Data From Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 writeTextDocument

1-293

writeWordEmbedding
Write word embedding file

Syntax
writeWordEmbedding(emb,filename)

Description
writeWordEmbedding(emb,filename) writes the word embedding emb to the file
filename. The function writes the vocabulary in UTF-8 in word2vec text format.

Examples

Write Word Embedding to File

Train a word embedding and write it to a text file.

Train a word embedding using the example data returned by sonnetsDocuments. This
function returns preprocessed versions of Shakespeare's sonnets as a
tokenizedDocument array.

To use the example file sonnetsDocuments.m, add the example folder to the path.

exampleFolder = genpath(fullfile(matlabroot,'examples','textanalytics'));
addpath(exampleFolder)

Load the sonnetsDocuments data.

documents = sonnetsDocuments;
emb = trainWordEmbedding(documents)

Training: 100% Loss: 2.78156 Remaining time: 0 hours 0 minutes.

1 Functions — Alphabetical List

1-294

emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1×401 string]

Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb,filename)

Read the word embedding file using readWordEmbedding.

emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1×401 string]

Remove the example folder from the path using rmpath.

rmpath(exampleFolder)

Input Arguments
emb — Input word embedding
word embedding

Input word embedding, specified as a wordEmbedding object.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

 writeWordEmbedding

1-295

See Also
ismember | readWordEmbedding | trainWordEmbedding | vec2word | word2vec |
wordEmbedding

Topics
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
“Extract Text Data From Files”

Introduced in R2017b

1 Functions — Alphabetical List

1-296

